[1] Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society, 131(17), pp.6050-6051.
[2] Singh, A., Umakanth, V., Tyagi, N., Baghel, A.K. and Kumar, S., 2023. Comparative study of commercial crystalline solar cells. Results in Optics, 11, p.100379.
[3] Danladi, E., Jubu, P.R., Tighezza, A.M., Hossain, I., Tasie, N.N., Abdulmalik, M.O., Egbugha, A.C., Awoji, M.O., Kashif, M., Onoja, E.D. and Amanyi, M.I., 2023. Highly efficient, hole transport layer (HTL)-free perovskite solar cell based on lithium-doped electron transport layer by device simulation. Emergent Materials, 6(6), pp.1779-1795.
[4] Jiao, B., Tan, L., Ye, Y., Ren, N., Li, M., Li, H., Li, X. and Yi, C., 2025. One-stone-two-birds: over 26% efficiency in perovskite solar cells via synergistic crystallization & interface regulation. Energy & Environmental Science, 18(11), pp.5437-5447.
[5] Danladi, E., Ichoja, A., Onoja, E.D., Adepehin, D.S., Onwoke, E.E., Ekwu, O.M. and Alfred, D.O., 2023. Broad-band-enhanced and minimal hysteresis perovskite solar cells with interfacial coating of biogenic plasmonic light trapping silver nanoparticles. Materials Research Innovations, 27(7), pp.521-536.
[6] Danladi, E., Kashif, M., Ichoja, A. and Ayiya, B.B., 2023. Modeling of a Sn-based HTM-free perovskite solar cell using a one-dimensional solar cell capacitance simulator tool. Transactions of Tianjin University, 29(1), pp.62-72.
[7] Sun, C., Xu, L., Lai, X., Li, Z. and He, M., 2021. Advanced Strategies of Passivating Perovskite Defects for High‐Performance Solar Cells. Energy & Environmental Materials, 4(3), pp.293-301.
[8] Ávila-López, A., Cruz, J.C., Díaz-Real, J.A., García-Uitz, K., Cante-Góngora, D. and Rodríguez-May, G., 2025. A Review of Perovskite-Based Solar Cells over the Last Decade: The Evolution of the Hole Transport Layer and the Use of WO3 as an Electron Transport Layer. Coatings, 15(2), p.132.
[9] Ogunmoye, K.A., Izang, J.C., Olorunyolemi, I., Ozurumba, A.C. and Danladi, E., 2025. Highly efficient MAGeI3 HTL-free perovskite solar cell with lithium-doped electron transport layer: A dive into SCAPS-1D simulation insight. Journal of Energy Technology and Environment, 7(2), pp.34-50.
[10] Danladi, E., Obagboye, L.F., Aisida, S., Ezema, F.I., Okorie, O., Bwamba, J.A., Emmanuel, P.A., Hussaini, A.A., Jubu, P.R. and Ozurumba, A.C., 2025. 20.730% highly efficient lead-free CsSnI3-based perovskite solar cells with various charge transport materials: a SCAPS-1D study. Multiscale and Multidisciplinary Modeling, Experiments and Design, 8(1), p.114.
[11] Yang, W.F., Igbari, F., Lou, Y.H., Wang, Z.K. and Liao, L.S., 2020. Tin halide perovskites: progress and challenges. Advanced Energy Materials, 10(13), p.1902584.
[12] Slavney, A.H., Hu, T., Lindenberg, A.M. and Karunadasa, H.I., 2016. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of the American chemical society, 138(7), pp.2138-2141.
[13] Danladi, E., Oguzie, E.E. and Ezema, F.I., 2025. Challenges and outlooks on stability of inverted perovskite solar cells: a review insight. Multiscale and Multidisciplinary Modeling, Experiments and Design, 8(1), p.119.
[14] Yang, J., Bao, C., Ning, W., Wu, B., Ji, F., Yan, Z., Tao, Y., Liu, J.M., Sum, T.C., Bai, S. and Wang, J., 2019. Stable, high‐sensitivity and fast‐response photodetectors based on lead‐free Cs2AgBiBr6 double perovskite films. Advanced Optical Materials, 7(13), p.1801732.
[15] Yin, L., Wu, H., Pan, W., Yang, B., Li, P., Luo, J., Niu, G. and Tang, J., 2019. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X‐ray detection. Advanced Optical Materials, 7(19), p.1900491.
[16] Lin, D., Zhan, Z., Huang, X., Liu, P. and Xie, W., 2022. Advances in components engineering in vapor deposited perovskite thin film for photovoltaic application. Materials Today Advances, 16, p.100277.
[17] Shadabroo, M.S., Abdizadeh, H. and Golobostanfard, M.R., 2021. Dimethyl sulfoxide vapor-assisted Cs2AgBiBr6 homogenous film deposition for solar cell application. ACS Applied Energy Materials, 4(7), pp.6797-6805.
[18] Yang, B., Chen, J., Yang, S., Hong, F., Sun, L., Han, P., Pullerits, T., Deng, W. and Han, K., 2018. Lead-Free Silver-Bismuth Halide Double Perovskite Nanocrystals. Angewandte Chemie, 57(19), pp. 5359-5363.
[19] Ullah, A., Shafiq, M., Abualnaja, K.M. and Fawy, K.F., 2025. The improvement in double perovskite solar cells Cs2AgBiBr6 by the praseodymium doping and surface passivation of polythiophene. Chemical Engineering Science, p.122384.
[20] Umer, S., Khan, M.I., Ullah, A., Asad, M., Kebaili, I., Mnif, W., Algarni, Z. and Saleem, M.I., 2024. Improving Cs2AgBiBr6 double perovskite solar cells through graphdiyne doping: A Stride towards enhanced performance. Optical Materials, 156, p. 115896.
[21] Danladi, E., Oguzie, E.E. and Ezema, F.I., 2025. Highly efficient 25.562% Cs2AgBiBr6 double perovskite solar cell with copper barium tin sulfide and ZnO as charge transport channels: an intuition from a theoretical study using SCAPS-1D. Journal of Photonics for Energy, 15(2), pp.024501-024501.
[22] Khan, M.I., Farhat, L.B., Elhouichet, H. and Patil, R.P., 2025. Enhancing efficiency of Cs2AgBiBr6 double perovskite solar cells through bandgap reduction by molybdenum doping. Journal of the Korean Ceramic Society, 62(2), pp.359-369.
[23] Lei, H., Hardy, D. and Gao, F., 2021. Lead‐free double perovskite Cs2AgBiBr6: fundamentals, applications, and perspectives. Advanced Functional Materials, 31(49), p.2105898.
[24] Yang, X., Chen, Y., Liu, P., Xiang, H., Wang, W., Ran, R., Zhou, W. and Shao, Z., 2020. Multifunctional Dye Interlayers: Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs2AgBiBr6 Lead‐Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer. Advanced Functional Materials, 30(23), p. 2001557.
[25] Zhao, X.G., Yang, D., Ren, J.C., Sun, Y., Xiao, Z. and Zhang, L., 2018. Rational design of halide double perovskites for optoelectronic applications. Joule, 2(9), pp.1662-1673.
[26] Zhang, Z., Sun, Q., Lu, Y., Lu, F., Mu, X., Wei, S.H. and Sui, M., 2022. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nature communications, 13(1), p.3397.
[27] Usman, A. and Bovornratanaraks, T., 2024. An extensive study of the impact of graphene passivation on HTLs (PTAA and NiO) in MAPBI3 and Cs3Bi2I9-based inverted perovskite solar cells for thermal stability in SCAPS 1D framework. Solar Energy, 284, p.113043.
[28] Nikfar, N. and Memarian, N., 2022. Theoretical study on the effect of electron transport layer parameters on the functionality of double-cation perovskite solar cells. Optik, 258, p.168932.
[29] Minbashi, M., Omrani, M.K., Memarian, N. and Kim, D.H., 2017. Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell. Current Applied Physics, 17(10), pp.1238-1243.
[30] Omrani, M.K., Minbashi, M., Memarian, N. and Kim, D.H., 2018. Improve the performance of CZTSSe solar cells by applying a SnS BSF layer. Solid-state electronics, 141, pp.50-57.
[31] Minbashi, M., Ghobadi, A., Ehsani, M.H., Dizaji, H.R. and Memarian, N., 2018. Simulation of high efficiency SnS-based solar cells with SCAPS. solar energy, 176, pp.520-525.
[32] Danladi, E., Gyuk, P.M., Tasie, N.N., Egbugha, A.C., Behera, D., Hossain, I., Bagudo, I.M., Madugu, M.L. and Ikyumbur, J.T., 2023. Impact of hole transport material on perovskite solar cells with different metal electrode: a SCAPS-1D simulation insight. Heliyon, 9(6).
[33] Tariq, M.U.N., Masud, M.I., Al Dmour, H., Ghulman, H.A., Kashif, M., Malik, M. and Nahas, M., 2025. Optimization of high-efficiency solid-state dye sensitized solar cells (ssDSSCs) based on N719 dye via electron transport layer engineering using SCAPS-1D. Results in Engineering, p.106465.
[34] Danladi, E., Kashif, M., Daniel, T.O., Achem, C.U. and Gyan, M., 2022. 7.379% Power conversion efficiency of a numerically simulated solid-state dye-sensitized solar cell with copper (I) thiocyanate as a hole conductor. East European Journal of Physics, (3), pp.19-31.
[35] Danladi, E., Egbugha, A.C., Obasi, R.C., Tasie, N.N., Achem, C.U., Haruna, I.S. and Ezeh, L.O., 2023. Defect and doping concentration study with series and shunt resistance influence on graphene modified perovskite solar cell: a numerical investigation in SCAPS-1D framework. Journal of the Indian Chemical Society, 100(5), p.101001.
[36] Hossain, M.K., Datta, A.K., Alsalman, O., Uddin, M.S., Toki, G.F., Darwish, M.A., Mohammad, M.R., Dwivedi, D.K., Haldhar, R. and Trukhanov, S.V., 2024. An extensive study on charge transport layers to design and optimization of high-efficiency lead-free Cs2PtI6-based double-perovskite solar cells: a numerical simulation approach. Results in Physics, 61, p.107751.
[37] Lee, Y.M., Maeng, I., Park, J., Song, M., Yun, J.H., Jung, M.C. and Nakamura, M., 2018. Comprehensive understanding and controlling the defect structures: An effective approach for organic-inorganic hybrid perovskite-based solar-cell application. Frontiers in Energy Research, 6, p.128.
[38] Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B. and Petrozza, A., 2014. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 7(9), pp.3061-3068.
[39] Hao, F., Stoumpos, C.C., Guo, P., Zhou, N., Marks, T.J., Chang, R.P. and Kanatzidis, M.G., 2015. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 137(35), pp.11445-11452.
[40] Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S. and Sum, T.C., 2013. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342(6156), pp.344-347.
[41] Li, G., Zou, X., Cheng, J., Yu, X., Zhou, Z., Wang, J., Liu, B. and Chen, D., 2021. Simulation of carriers spatial distribution and transportation in co-mixing composition perovskite for solar cell. Materials Research Express, 8(3), p.035006.
[42] Dipta, S.S., Uddin, A. and Conibeer, G., 2022. Enhanced light management and optimization of perovskite solar cells incorporating wavelength dependent reflectance modeling. Heliyon, 8(11), p. e11380.
[43] Lazemi, M., Asgharizadeh, S. and Bellucci, S., 2018. A computational approach to interface engineering of lead-free CH 3 NH 3 SnI 3 highly-efficient perovskite solar cells. Physical Chemistry Chemical Physics, 20(40), pp.25683-25692.
[44] Patel, P.K., 2021. Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Scientific reports, 11(1), p.3082.
[45] Son, D.Y., Im, J.H., Kim, H.S. and Park, N.G., 2014. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. The Journal of Physical Chemistry C, 118(30), pp.16567-16573.
[46] Mamta, Kumari, R., Kumar, R., Maurya, K.K. and Singh, V.N., 2023. Ideal HTLs may open the door for further development of Sb2Se3 solar cells—a numerical approach. Sustainability, 15(13), p.10465.
[47] Mortadi, A., Nasrellah, H., Monkade, M. and El Moznine, R., 2024. Investigation of bandgap grading on performances of perovskite solar cell using SCAPS-1D and impedance spectroscopy. Solar Energy Advances, 4, p.100056.
[48] Sumona, F.B., Kashif, M., Danladi, E., Tighezza, A.M., Al-Mahmud, N., Toki, G.F., Pandey, R. and Hossain, M.K., 2023. Optimization of perovskite-KSnI3 solar cell by using different hole and electron transport layers: a numerical SCAPS-1D simulation. Energy & Fuels, 37(23), pp.19207-19219.
[49] Kumar, M., Kumar, A., Raj, A., Kr. Singh, P. and Anshul, A., 2023, February. Effect of Band‐Gap Tuning and Series Resistance on PCE of Optimized MAPbI3‐Based PSC by SCAPS‐1D Simulation. In Macromolecular Symposia (Vol. 407, No. 1, p. 2100464).
[50] Pang, B., Cui, W., Li, Y., Feng, J., Dong, H., Yu, L. and Dong, L., 2025. Lithium and sodium ion Co-doping: A promising strategy for enhancing the performance of Cs2AgBiBr6 perovskite solar cells. Journal of Alloys and Compounds, 1010, p.177394.
[51] Srivastava, A., Kasliwal, M. and Shirage, P.M., 2025. From HTL to HTL-free: Experimental and numerically modelled performance dynamics of Cs2AgBiBr6 double perovskite solar cells. Solar Energy, 298, p.113733.
[52] Yang, W., Li, W., Liu, Q. and Jin, Y., 2025. Design and simulation of gradient-structured Cs2AgBiBr6 carbon-based double perovskite solar cell for boosting photovoltaic performance. Solar Energy, 290, p.113347.
[53] Mohandes, A., Moradi, M. and Nadgaran, H., 2021. Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D. Optical and Quantum Electronics, 53(6), p.319.
[54] Alanazi, T.I., 2023. Design and device numerical analysis of lead-free Cs2AgBiBr6 double perovskite solar cell. Crystals, 13(2), p.267.
[55] Chabri, I., Benhouria, Y., Oubelkacem, A., Kaiba, A., Essaoudi, I. and Ainane, A., 2023. Cs2AgBiBr6-based perovskite solar cell: A novel combination of ITO/CdS/Cs2AgBiBr6/CuAlO2/Pt, with inorganic charge transport layers. Optik, 274, p.170560.
[56] Ukorah, I.N., Owolabi, A.J., Ali, H., Onimisi, M.Y., Tafida, R.A., Olalekan, A.J., Gambo, H.M., Usman, S.L., Christiana, A.O., Ukwenya, J.M. and Akinade, B.J., 2024. Investigating the Performance of TIN-Based Perovskite Solar Cell with Zinc Selenide as an ETM and Graphene as an HTM Using SCAPS-1D. Progress in Physics of Applied Materials, 4(2), pp.171-181.