Multifunctional Dye Interlayer Enhances the Power Conversion Efficiency of Cs2AgBiBr6 Lead-Free Inorganic Perovskite Solar Cell in a SCAPS-1D Simulation

Document Type : Original Article

Authors

1 Department of Physics, Federal University of Health Sciences, Otukpo, Benue State, Nigeria

2 Department of Computer Science, Nile University of Nigeria

3 Department of Science Education, Federal University Dutsin-Ma, Katsina State, Nigeria

10.22075/ppam.2025.39482.1181

Abstract

This study presents a simple, yet efficient method for improving the performance of Cs2AgBiBr6 perovskite solar cells (PSCs) by adding a N719 dye as an interlayer between the absorber and the hole transport layer (HTL). This was achieved through device simulation using solar capacitance simulation software in one dimension (SCAPS-1D), which based on Poisson and continuity equations. The presence of the N719 dye promotes faster hole extraction, improves energy level alignment within the device structure, decreases charge carrier recombination, and increases the range of light absorption. The open circuit voltage (Voc), current density (Jsc), fill factor (FF), and power conversion efficiency (PCE) of the pure Cs2AgBiBr6-based device were 0.81V, 7.61 mA/cm2, 46.68%, and 2.89%, respectively, whereas the Voc, Jsc, FF, and PCE of the N719 modified Cs2AgBiBr6 device were 1.15 V, 8.05 mA/cm2, 59.89%, and 5.53% respectively. Consequently, optimizing the electron transport layer (ETL) ND, ETL Nt, absorber layer band gap, thickness, and absorber Nt, to obtain the optimal values of 1020 cm-3, 1015 cm-2, 1.9 eV, 0.4 μm, and 1011 cm-2, respectively, led to achieve a remarkable PCE of 14.09%, which is a notable improvement over the Cs2AgBiBr6-based perovskite solar cells that have been previously documented in the literature. 

Keywords

Main Subjects


© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1]    Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society131(17), pp.6050-6051.
[2]    Singh, A., Umakanth, V., Tyagi, N., Baghel, A.K. and Kumar, S., 2023. Comparative study of commercial crystalline solar cells. Results in Optics11, p.100379.
[3]    Danladi, E., Jubu, P.R., Tighezza, A.M., Hossain, I., Tasie, N.N., Abdulmalik, M.O., Egbugha, A.C., Awoji, M.O., Kashif, M., Onoja, E.D. and Amanyi, M.I., 2023. Highly efficient, hole transport layer (HTL)-free perovskite solar cell based on lithium-doped electron transport layer by device simulation. Emergent Materials6(6), pp.1779-1795.
[4]    Jiao, B., Tan, L., Ye, Y., Ren, N., Li, M., Li, H., Li, X. and Yi, C., 2025. One-stone-two-birds: over 26% efficiency in perovskite solar cells via synergistic crystallization & interface regulation. Energy & Environmental Science18(11), pp.5437-5447.
[5]    Danladi, E., Ichoja, A., Onoja, E.D., Adepehin, D.S., Onwoke, E.E., Ekwu, O.M. and Alfred, D.O., 2023. Broad-band-enhanced and minimal hysteresis perovskite solar cells with interfacial coating of biogenic plasmonic light trapping silver nanoparticles. Materials Research Innovations27(7), pp.521-536.
[6]    Danladi, E., Kashif, M., Ichoja, A. and Ayiya, B.B., 2023. Modeling of a Sn-based HTM-free perovskite solar cell using a one-dimensional solar cell capacitance simulator tool. Transactions of Tianjin University29(1), pp.62-72.
[7]    Sun, C., Xu, L., Lai, X., Li, Z. and He, M., 2021. Advanced Strategies of Passivating Perovskite Defects for High‐Performance Solar Cells. Energy & Environmental Materials4(3), pp.293-301.
[8]    Ávila-López, A., Cruz, J.C., Díaz-Real, J.A., García-Uitz, K., Cante-Góngora, D. and Rodríguez-May, G., 2025. A Review of Perovskite-Based Solar Cells over the Last Decade: The Evolution of the Hole Transport Layer and the Use of WO3 as an Electron Transport Layer. Coatings15(2), p.132.
[9]    Ogunmoye, K.A., Izang, J.C., Olorunyolemi, I., Ozurumba, A.C. and Danladi, E., 2025. Highly efficient MAGeI3 HTL-free perovskite solar cell with lithium-doped electron transport layer: A dive into SCAPS-1D simulation insight. Journal of Energy Technology and Environment7(2), pp.34-50.
[10]  Danladi, E., Obagboye, L.F., Aisida, S., Ezema, F.I., Okorie, O., Bwamba, J.A., Emmanuel, P.A., Hussaini, A.A., Jubu, P.R. and Ozurumba, A.C., 2025. 20.730% highly efficient lead-free CsSnI3-based perovskite solar cells with various charge transport materials: a SCAPS-1D study. Multiscale and Multidisciplinary Modeling, Experiments and Design8(1), p.114.
[11]  Yang, W.F., Igbari, F., Lou, Y.H., Wang, Z.K. and Liao, L.S., 2020. Tin halide perovskites: progress and challenges. Advanced Energy Materials10(13), p.1902584.
[12]  Slavney, A.H., Hu, T., Lindenberg, A.M. and Karunadasa, H.I., 2016. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of the American chemical society138(7), pp.2138-2141.
[13]  Danladi, E., Oguzie, E.E. and Ezema, F.I., 2025. Challenges and outlooks on stability of inverted perovskite solar cells: a review insight. Multiscale and Multidisciplinary Modeling, Experiments and Design8(1), p.119.
[14]  Yang, J., Bao, C., Ning, W., Wu, B., Ji, F., Yan, Z., Tao, Y., Liu, J.M., Sum, T.C., Bai, S. and Wang, J., 2019. Stable, high‐sensitivity and fast‐response photodetectors based on lead‐free Cs2AgBiBr6 double perovskite films. Advanced Optical Materials7(13), p.1801732.
[15]  Yin, L., Wu, H., Pan, W., Yang, B., Li, P., Luo, J., Niu, G. and Tang, J., 2019. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X‐ray detection. Advanced Optical Materials7(19), p.1900491.
[16]  Lin, D., Zhan, Z., Huang, X., Liu, P. and Xie, W., 2022. Advances in components engineering in vapor deposited perovskite thin film for photovoltaic application. Materials Today Advances16, p.100277.
[17]  Shadabroo, M.S., Abdizadeh, H. and Golobostanfard, M.R., 2021. Dimethyl sulfoxide vapor-assisted Cs2AgBiBr6 homogenous film deposition for solar cell application. ACS Applied Energy Materials4(7), pp.6797-6805.
[18]  Yang, B., Chen, J., Yang, S., Hong, F., Sun, L., Han, P., Pullerits, T., Deng, W. and Han, K., 2018. Lead-Free Silver-Bismuth Halide Double Perovskite Nanocrystals. Angewandte Chemie, 57(19), pp. 5359-5363.
[19]  Ullah, A., Shafiq, M., Abualnaja, K.M. and Fawy, K.F., 2025. The improvement in double perovskite solar cells Cs2AgBiBr6 by the praseodymium doping and surface passivation of polythiophene. Chemical Engineering Science, p.122384.
[20]  Umer, S., Khan, M.I., Ullah, A., Asad, M., Kebaili, I., Mnif, W., Algarni, Z. and Saleem, M.I., 2024. Improving Cs2AgBiBr6 double perovskite solar cells through graphdiyne doping: A Stride towards enhanced performance. Optical Materials, 156, p. 115896.
[21]  Danladi, E., Oguzie, E.E. and Ezema, F.I., 2025. Highly efficient 25.562% Cs2AgBiBr6 double perovskite solar cell with copper barium tin sulfide and ZnO as charge transport channels: an intuition from a theoretical study using SCAPS-1D. Journal of Photonics for Energy15(2), pp.024501-024501.
[22]  Khan, M.I., Farhat, L.B., Elhouichet, H. and Patil, R.P., 2025. Enhancing efficiency of Cs2AgBiBr6 double perovskite solar cells through bandgap reduction by molybdenum doping. Journal of the Korean Ceramic Society62(2), pp.359-369.
[23]  Lei, H., Hardy, D. and Gao, F., 2021. Lead‐free double perovskite Cs2AgBiBr6: fundamentals, applications, and perspectives. Advanced Functional Materials31(49), p.2105898.
[24] Yang, X., Chen, Y., Liu, P., Xiang, H., Wang, W., Ran, R., Zhou, W. and Shao, Z., 2020. Multifunctional Dye Interlayers: Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs2AgBiBr6 Lead‐Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer. Advanced Functional Materials30(23), p. 2001557.
[25]  Zhao, X.G., Yang, D., Ren, J.C., Sun, Y., Xiao, Z. and Zhang, L., 2018. Rational design of halide double perovskites for optoelectronic applications. Joule2(9), pp.1662-1673.
[26]  Zhang, Z., Sun, Q., Lu, Y., Lu, F., Mu, X., Wei, S.H. and Sui, M., 2022. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nature communications13(1), p.3397.
[27]  Usman, A. and Bovornratanaraks, T., 2024. An extensive study of the impact of graphene passivation on HTLs (PTAA and NiO) in MAPBI3 and Cs3Bi2I9-based inverted perovskite solar cells for thermal stability in SCAPS 1D framework. Solar Energy284, p.113043.
[28]  Nikfar, N. and Memarian, N., 2022. Theoretical study on the effect of electron transport layer parameters on the functionality of double-cation perovskite solar cells. Optik258, p.168932.
[29]  Minbashi, M., Omrani, M.K., Memarian, N. and Kim, D.H., 2017. Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell. Current Applied Physics17(10), pp.1238-1243.
[30]  Omrani, M.K., Minbashi, M., Memarian, N. and Kim, D.H., 2018. Improve the performance of CZTSSe solar cells by applying a SnS BSF layer. Solid-state electronics141, pp.50-57.
[31]  Minbashi, M., Ghobadi, A., Ehsani, M.H., Dizaji, H.R. and Memarian, N., 2018. Simulation of high efficiency SnS-based solar cells with SCAPS. solar energy176, pp.520-525.
[32]  Danladi, E., Gyuk, P.M., Tasie, N.N., Egbugha, A.C., Behera, D., Hossain, I., Bagudo, I.M., Madugu, M.L. and Ikyumbur, J.T., 2023. Impact of hole transport material on perovskite solar cells with different metal electrode: a SCAPS-1D simulation insight. Heliyon9(6).
[33]  Tariq, M.U.N., Masud, M.I., Al Dmour, H., Ghulman, H.A., Kashif, M., Malik, M. and Nahas, M., 2025. Optimization of high-efficiency solid-state dye sensitized solar cells (ssDSSCs) based on N719 dye via electron transport layer engineering using SCAPS-1D. Results in Engineering, p.106465.
[34]  Danladi, E., Kashif, M., Daniel, T.O., Achem, C.U. and Gyan, M., 2022. 7.379% Power conversion efficiency of a numerically simulated solid-state dye-sensitized solar cell with copper (I) thiocyanate as a hole conductor. East European Journal of Physics, (3), pp.19-31.
[35]  Danladi, E., Egbugha, A.C., Obasi, R.C., Tasie, N.N., Achem, C.U., Haruna, I.S. and Ezeh, L.O., 2023. Defect and doping concentration study with series and shunt resistance influence on graphene modified perovskite solar cell: a numerical investigation in SCAPS-1D framework. Journal of the Indian Chemical Society100(5), p.101001.
[36]  Hossain, M.K., Datta, A.K., Alsalman, O., Uddin, M.S., Toki, G.F., Darwish, M.A., Mohammad, M.R., Dwivedi, D.K., Haldhar, R. and Trukhanov, S.V., 2024. An extensive study on charge transport layers to design and optimization of high-efficiency lead-free Cs2PtI6-based double-perovskite solar cells: a numerical simulation approach. Results in Physics61, p.107751.
[37]  Lee, Y.M., Maeng, I., Park, J., Song, M., Yun, J.H., Jung, M.C. and Nakamura, M., 2018. Comprehensive understanding and controlling the defect structures: An effective approach for organic-inorganic hybrid perovskite-based solar-cell application. Frontiers in Energy Research6, p.128.
[38]  Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B. and Petrozza, A., 2014. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science7(9), pp.3061-3068.
[39]  Hao, F., Stoumpos, C.C., Guo, P., Zhou, N., Marks, T.J., Chang, R.P. and Kanatzidis, M.G., 2015. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society137(35), pp.11445-11452.
[40]  Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S. and Sum, T.C., 2013. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science342(6156), pp.344-347.
[41]  Li, G., Zou, X., Cheng, J., Yu, X., Zhou, Z., Wang, J., Liu, B. and Chen, D., 2021. Simulation of carriers spatial distribution and transportation in co-mixing composition perovskite for solar cell. Materials Research Express8(3), p.035006.
[42]  Dipta, S.S., Uddin, A. and Conibeer, G., 2022. Enhanced light management and optimization of perovskite solar cells incorporating wavelength dependent reflectance modeling. Heliyon8(11), p. e11380.
[43]  Lazemi, M., Asgharizadeh, S. and Bellucci, S., 2018. A computational approach to interface engineering of lead-free CH 3 NH 3 SnI 3 highly-efficient perovskite solar cells. Physical Chemistry Chemical Physics20(40), pp.25683-25692.
[44]  Patel, P.K., 2021. Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Scientific reports11(1), p.3082.
[45]  Son, D.Y., Im, J.H., Kim, H.S. and Park, N.G., 2014. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. The Journal of Physical Chemistry C118(30), pp.16567-16573.
[46]  Mamta, Kumari, R., Kumar, R., Maurya, K.K. and Singh, V.N., 2023. Ideal HTLs may open the door for further development of Sb2Se3 solar cells—a numerical approach. Sustainability15(13), p.10465.
[47]  Mortadi, A., Nasrellah, H., Monkade, M. and El Moznine, R., 2024. Investigation of bandgap grading on performances of perovskite solar cell using SCAPS-1D and impedance spectroscopy. Solar Energy Advances4, p.100056.
[48]  Sumona, F.B., Kashif, M., Danladi, E., Tighezza, A.M., Al-Mahmud, N., Toki, G.F., Pandey, R. and Hossain, M.K., 2023. Optimization of perovskite-KSnI3 solar cell by using different hole and electron transport layers: a numerical SCAPS-1D simulation. Energy & Fuels37(23), pp.19207-19219.
[49]  Kumar, M., Kumar, A., Raj, A., Kr. Singh, P. and Anshul, A., 2023, February. Effect of Band‐Gap Tuning and Series Resistance on PCE of Optimized MAPbI3‐Based PSC by SCAPS‐1D Simulation. In Macromolecular Symposia (Vol. 407, No. 1, p. 2100464).
[50]  Pang, B., Cui, W., Li, Y., Feng, J., Dong, H., Yu, L. and Dong, L., 2025. Lithium and sodium ion Co-doping: A promising strategy for enhancing the performance of Cs2AgBiBr6 perovskite solar cells. Journal of Alloys and Compounds1010, p.177394.
[51]  Srivastava, A., Kasliwal, M. and Shirage, P.M., 2025. From HTL to HTL-free: Experimental and numerically modelled performance dynamics of Cs2AgBiBr6 double perovskite solar cells. Solar Energy298, p.113733.
[52]  Yang, W., Li, W., Liu, Q. and Jin, Y., 2025. Design and simulation of gradient-structured Cs2AgBiBr6 carbon-based double perovskite solar cell for boosting photovoltaic performance. Solar Energy290, p.113347.
[53]  Mohandes, A., Moradi, M. and Nadgaran, H., 2021. Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D. Optical and Quantum Electronics53(6), p.319.
[54]  Alanazi, T.I., 2023. Design and device numerical analysis of lead-free Cs2AgBiBr6 double perovskite solar cell. Crystals13(2), p.267.
[55]  Chabri, I., Benhouria, Y., Oubelkacem, A., Kaiba, A., Essaoudi, I. and Ainane, A., 2023. Cs2AgBiBr6-based perovskite solar cell: A novel combination of ITO/CdS/Cs2AgBiBr6/CuAlO2/Pt, with inorganic charge transport layers. Optik274, p.170560.
[56]  Ukorah, I.N., Owolabi, A.J., Ali, H., Onimisi, M.Y., Tafida, R.A., Olalekan, A.J., Gambo, H.M., Usman, S.L., Christiana, A.O., Ukwenya, J.M. and Akinade, B.J., 2024. Investigating the Performance of TIN-Based Perovskite Solar Cell with Zinc Selenide as an ETM and Graphene as an HTM Using SCAPS-1D. Progress in Physics of Applied Materials4(2), pp.171-181.