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This study presents a simple, yet efficient method for improving the performance of Cs:AgBiBrs
perovskite solar cells (PSCs) by adding a N719 dye as an interlayer between the absorber and the hole
transport layer (HTL). This was achieved through device simulation using solar capacitance
simulation software in one dimension (SCAPS-1D), which based on Poisson and continuity equations.
The presence of the N719 dye promotes faster hole extraction, improves energy level alignment
within the device structure, decreases charge carrier recombination, and increases the range of light
absorption. The open circuit voltage (Voc), current density (/sc), fill factor (FF), and power conversion
efficiency (PCE) of the pure Cs2AgBiBrs-based device were 0.81V, 7.61 mA/cm?, 46.68%, and 2.89%,
respectively, whereas the Vo, Js, FF, and PCE of the N719 modified Cs2AgBiBrs device were 1.15 V,
8.05 mA/cm?, 59.89%, and 5.53% respectively. Consequently, optimizing the electron transport layer
(ETL) Np, ETL Nt, absorber layer band gap, thickness, and absorber Nt, to obtain the optimal values of
1020 cm3, 1015 cm?, 1.9 eV, 0.4 um, and 101! cm?, respectively, led to achieve a remarkable PCE of
14.09%, which is a notable improvement over the Cs2AgBiBrs-based perovskite solar cells that have
been previously documented in the literature.

1. Introduction

obstacles still hinder their commercialization viability,
which include; current-voltage hysteresis, limited long-

Organic-inorganic halide perovskite solar cells (PSCs)
have garnered a lot of attention as possible next-generation
photovoltaic technologies, since their first introduction by
Kojima, et al. [1]. They are seen as great competitors to
traditional devices like monocrystalline and polycrystalline
silicon solar cells due to their cost effectiveness, simple
manufacturing procedures, and potential for high power
conversion efficiencies [2, 3].

Power conversion efficiency of PSCs has increased
significantly over the last 14 years, reaching over 26% [4].
Despite these impressive advancements, a number of
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term stability, lead toxicity, and inadequate moisture
resistance [5-8]. In order to mitigate these challenges,
researchers have focused on all-inorganic, lead-free
perovskites, which provide better stability and increased
environmental compatibility. Cations like Sn2+, GeZ*, Bi3+
and Sb3* are environmentally safe alternatives for the
hazardous divalent Pb%* ion [9,10], due to their similar ionic
radii and electronic configurations. However, the stability of
the material is compromised due to change in oxidation
state of SnZ* and Ge2* to Sn2?* and Ge?*, respectively [11].
Furthermore, low-dimensional A*3B3*2X9 structures with
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suboptimal optoelectronic properties such as limited charge
carrier mobility and high exciton binding energies are
commonly formed by halide perovskites based on trivalent
Bi3+ and Sb3*, which ultimately result in low PCEs [12].
Halide double perovskites (HDPs) with the general formula
A+:B3*Xs replaced the hazardous Pb** with the more
ecologically friendly Bi®** while maintaining the three-
dimensional crystal structure. This structure substitutes
one monovalent (B*) and one trivalent (B3*) cation for two
divalent Pb%* ions [12, 13]. Cs2AgBiBrs has become a well-
known HDP in recent years and has been synthesized
successfully and used for energy conversion applications,
including photovoltaics, photocatalysis, and photodetection
[14, 15] . Using both vapor deposition and solution-based
processing methods, several researchers have successfully
fabricated Cs2AgBiBre thin films for perovskite solar cells
[16-18]. Recent studies have also focused on other lead-free
double perovskites, including Cs2AgInCls, Cs2AgSbBre, and
Csz2NaBiCle. The broad bandgap (~3.3 eV) of Cs2AgInCle
prevents effective absorption of visible light, though with
desirable optical tunability. Similarly, Cs2NaBiCle is unstable
and has poor charge transport despite being
environmentally benign. Although Cs2AgSbBre exhibits
some promising features due to its narrower bandgap
(~1.95-2.0 eV), its synthesis remains difficult, and only few
reports on its device performance have been documented
[19-21]. On the other hand, Cs2AgBiBre provides a moderate
bandgap of about 2.15 eV, good thermal stability and ease of
fabrication, making it a viable option for further
improvement through interface modification and doping.
For this study, Cs2AgBiBre was chosen as the absorber
material [22]. Despite its favorable properties, the intrinsic
characteristics of Cs2AgBiBrs, such as its wide indirect band
gap, high charge carrier effective masses, restricted charge
transport ability, and poor light absorption characteristics,
continue to lower the efficiency of the device [23-25].
Extrinsic factors like the limited solubility of halide
precursors in common organic solvents and the need for
high annealing temperatures (usually above 250 °C) to
achieve phase purity further complicate the production of
high-quality, single-phase Cs2AgBiBrs films. These
challenges impede the formation of homogeneous
perovskite layers, which are necessary to achieve high
device efficiency. As a result, the highest PCE ever recorded
for Cs:AgBiBre-based PSCs is still only 6.37% [26],
suggesting that lead-free Cs2AgBiBre PSCs requires more
effort to improve their performance.

In this work, without changing the current device
architecture, we suggest a simple method to improve the
power conversion efficiency of Cs2AgBiBre-based
perovskite solar cells through the use of SCAPS-1D tool,
which is based on the Poisson and equation of continuity
that operates by iteratively solving fundamental
semiconductor equations while accounting for the linear
distribution of electron and hole concentrations. The
fundamental idea is to modify the surface of Cs2AgBiBre
films with an interfacial layer of N719 dye (di-
tetrabutylammonium cis-bis (isothiocyanato) bis (2,2’-
bipyridyl-4,4’-dicarboxylato)  ruthenium  (II)). The
Cs2AgBiBrs film's surface defects are passivated, the light
absorption range is increased, and more effective hole

extraction is made possible by this dye layer. With the
addition of the N719 dye interlayer, the Cs2AgBiBre-based
perovskite solar cell achieved a PCE of 14.09%, along with
an open-circuit voltage (Voc) of 1.18 V, a fill factor (FF) of
76.56%, and a short-circuit current density (Jsc) of 15.56
mAcm-2, This approach provides a simple and efficient way
to improve the photoelectric performance of PSCs based on
lead-free Cs2AgBiBrs. In addition, this work supports
initiatives to reduce the overall carbon footprint by offering
insightful information about cleaner and sustainable
production methods in energy-related industries that use
dye materials.

2. Theoretical Methods and Simulations

The simulation in this paper was carried out using the
Solar capacitance simulation software in one dimension
(SCAPS-1D), which was developed by Burgelman and his
colleagues at the University of Ghent. Some of the benefits
that have drawn a lot of attention to the SCAPS-1D tool
include the user-friendliness, ability to simulate in both
light and dark conditions, ability to simulate up to seven
layers in the simulation environment without requiring
standard capacitance-voltage and capacitance-frequency
measurements, and ability to provide spectral response in
terms of external quantum efficiency (EQE) [27]. The
SCAPS package has been applied for different types of solar
cells with different materials and structures, as well as
having single junction or tandem configurations [28-31].
The tool solves the fundamental semiconductor equations
iteratively while addressing the electron and hole
concentrations linearly [10]. The input parameter needs to
be carefully selected in order for the simulation to
accurately represent its real counterpart. Equations 1-3
display the fundamental semiconductor equations [9].
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where Y is the electrostatic field, n(x) is the electron carrier
density, p(x) is the hole carrier density, Relative
permittivity is denoted by E,., free-space permittivity by €,
donor impurity concentration by Np, acceptor
concentration by Na, hole distribution by pp, electron
distribution by p,,, electric charge by q, rate of generation
by G, rate of recombination by R, electron density by J,,, and
hole density by J,,.

The device's efficiency and fill factor can be determined
using equations 4 and 5.

]mmep
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where, Jmp = Maximum obtainable current, Vimp = Maximum
obtainable voltage, Jsc = Short circuit current, Voc = Open
circuit voltage.
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Standard conditions for the study included a
temperature of 300 K, a frequency of 1x1016 Hz, and light
illumination of 100 mW/cm2 The HTL/Cs2AgBiBrs
interface was modified to include an interlayer in order to
investigate the effects of interfacial recombination on
photovoltaic performance. The data for the various layers
are displayed in Table 1. The data for the defect interface is
displayed in Table 2. The optical reflectance is considered
to be zero at the surface and at all interfaces. The control
variable method was used to optimize the parameters. The
characteristic energy is set to 0.1 eV and a neutral Gaussian
distribution defect is selected for the absorber layer.

Batch simulations were used to examine how layers’
parameters affected the PSCs device. In particular, the
effects of ETL Np, ETL Ny, absorber layer band gap, absorber

Energy (eV)

h+

thickness, and Nt were investigated. Figure 1 displays the
device structure, which was adopted from the work of Yang
etal. [24] by employing N719 dye as an interlayer between
the absorber and spiro-OMeTAD HTL to increase the light
absorption range, minimize recombination and stop
degradation, and more effective hole extraction is made
possible by this dye layer. The FTO/TiO2/Cs2AgBiBre/spiro-
OMeTAD/BC and FTO/TiO2/Cs2AgBiBrs/dye/spiro-
OMeTAD/BC configurations serve as the foundation for the
devices. The fluorine tin oxide (FTO) contact provided the
device's illumination, TiOz transports electrons, Cs2AgBiBrs
acts as an absorber, and spiro-OMeTAD transports holes.
4.4 and 4.94 eV are the FTO and BC work functions,
respectively [32].

(b)

Back contact
Spiro-OMeTAD

(d)

Energy (eV)

Fig. 1. (a) Solar cell configuration without N719, (b) Solar cell configuration with N719, (c) The energy-band without N719, and (d) The energy-band

with N719.
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Table 1. Data for individual layer used for the simulation of the PSC [3, 21, 33, 34].

Parameters FTO TiO2 Cs2AgBiBre N719 Spiro
T (um) 0.3 0.05 0.4 0.6 0.3
Eg (eV) 35 3.2 2.1 2.33 2.9
x (eV) 4.0 4.2 4.26 39 2.2
€r 9.0 10.0 5.8 30 3.0
Nc(cm-3) 2.2x1018 2.2x1018 1.0x1019 2.4x1020 2.2x1018
Nv (cm-3) 1.8x1018 1.8x1019 1.0x1019 2.5x1020 1.8x101°
tn (cm?2 V-15-1) 20 20 11.81 5 2.0x10
Hp (cm2 V-1s-1) 10 10 0.49 5 2.0x10¢
e vy, (cm/s) 1x107 1x107 1x107 1x107 1x107
h vy, (cm/s) 1x107 1x107 1x107 1x107 1x107
Np (cm-3) 2x1019 1x1017 1x1016 0 0
Na(cm-3) 0 0 1x1016 1x1017 1.0x1019
Nt (cm-3) 1x1015 1x1015 1x1014 1x1015 1x1015
Table 2. Data used for the interface layer.
Parameters Absorber  ETL/Cs2AgBiBre dye/Cs2AgBiBre HTL/dye HTL/Cs2AgBiBre
Defect type Neutral Neutral Neutral Neutral Neutral
o (e) (cm2) 1x10-15 2x10-16 2x10-16 1x10-19 1x10-19
o (h) (cm?) 1x10-15 2x10-16 2x10-16 1x10-19 1x10-19
Energetic distribution Gaussian Single Single Single Single
Energy level with respect to Ev (eV) 0.600 0.600 0.600 0.600 0.600
Characteristic energy (eV) 0.1 0.1 0.1 0.1 0.1
Nt (cm3) 1x1014 1x107 1x107 1x1010 1x1010

3. Results and Discussion

3.1.Initial measurement and validation with and
without N719

To ensure the precision and reliability of our simulation,
we first replicated the dye-free device structure
(FTO/TiO2/Cs2AgBiBre/Spiro-OMeTAD/BC) published by
Yang et al. [24] using the parameters listed in Table 1. The
simulated results were then compared with experimental
and literature-based results, as indicated in Table 3. The
strong agreement between our results and the
experimental results shows the validity of the simulation
approach. The J-V and P-V curves are shown in Figures 2a
and b.

By placing a N719 dye between the Spiro-OMeTAD and
the perovskite absorber, the performance of the PSC was
enhanced in contrast to the dye-free configuration. The cell
without the dye interlayer had a PCE of 2.89% with FF of
46.68%, Jsc of 7.61 mA/cm?, and Voc of 0.81 V. The cell with
the N719 dye interlayer, on the other hand, showed a PCE
of 5.53%, FF of 59.89%, Jsc of 8.05 mA/cm?, and Voc of 1.15
V. The efficiency has increased by about 1.91 times
compared to the former. The N719 interlayer between the

hole transport layer (HTL) and the perovskite absorber
improves the photovoltaic performance parameters by
improving interfacial charge dynamics and reducing
energy losses. The N719 layer serves as an efficient charge
mediator by preventing charge recombination at the
interface and promoting hole extraction from the
perovskite to the HTL. Furthermore, the N719 interlayer
reduces leakage currents and non-radiative recombination
by passivating surface defects at the perovskite/HTL
interface [35]. This leads to improved FF and PCE as a
result of improved charge transfer and decreased resistive
losses. Also, the higher Voc is due to decreased
recombination, and the increased Jsc is due to more
effective carrier collection.

Through energy band studies, as illustrated in Figures
2c and d, we further investigated the effects of adding N719
to the device. According to the energy band diagram, the
N719-based device had an offset at the Cs2AgBiBrs/N719
interface that the dye-free device did not have. According
to a detailed analysis of the energy band profile, the dye-
containing device should have a lower resistance at the
ETL/Cs2AgBiBrs than the device without N719.
Consequently, the dye-interlayered device is being
considered for additional simulation.
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Fig. 2. (a) J-V curve with and without N719, (b) P-V curve with and without N719, (c) Energy band profile for device without N719, (d) Energy band

profile for device with N719.

Table 3. -V parameters of experimental and simulated outcomes.

Device PCE FF (%)  Jsc(mA/cm?) Voc (V) Remark
(%)

Experimental without N719 2.47 55.10 4.49 1.00 [24]
Experimental with N719 2.84 52.40 5.13 1.02 [24]
Simulation without N719 2.89 46.68 7.61 0.81 This work

Simulation with N719 5.53 59.89 8.05 1.15 This work

3.2.Effect of ETL Np

The performance of the perovskite device is impacted
by the Np of the ETL. In this subsection, we examined the
impact of ETL Np on the photovoltaic metrics of the PSC by
altering the Np from 1075 to 1020 cm-3. Figure 3a shows the
J-V curve with different ETL Np, and Figures 3b and ¢ show
the correlation between the PV parameters and the ETL Np.
According to Table 4 and the curves, the PCE and FF rise
from 5.53 to 5.55% and from 59.79 to 60.04% with increase
in the ETL Np, respectively. The perovskite solar cell's PCE
and FF increase as the Np in the electron transport layer
rises due to improved charge transport and decreased
resistive losses [21]. A higher Np improves the ETL's
electrical conductivity and lowers the series resistance by
increasing the number of free electrons in the ETL. As a
result, electrons can be extracted from the perovskite
absorber to the electrode more quickly and effectively.

Furthermore, improved energy level alignment at the
ETL/perovskite interface results from the upward shift of
the ETL Fermi level caused by increase in doping [35]. This
lowers the potential barrier for electron transfer and
inhibits interfacial recombination. Excessive doping caused
space charge regions to be formed close to the
ETL/perovskite interface, trapping charge carriers and
preventing them from adding to the photocurrent.

The open-circuit voltage and short-circuit current density
remain constant as the ETL Np rises because the ETL largely
affects charge transport rather than light absorption or
carrier generation [10]. The perovskite absorber layer,
which remains unchanged as Np rises, primarily controls
the optical characteristics and photogeneration of charge
carriers. Similarly, once effective charge extraction is
attained, moderate changes in ETL doping have little effect
on Vo, which is primarily determined by the difference
between the quasi-Fermi levels of electrons and holes in the
device. As a result, higher Np has little effect on Jsc and Vo,
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which remain nearly constant, but it enhances conductivity
and lowers series resistance (affecting FF and PCE). The
optimized device's PCE, FF, Js,, and Voc are respectively

5.55%, 60.04%, 8.05 mA/cm?, and 1.15 V which is at ETL
Np of 1020 ¢cm3.
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Fig. 3. (a) J-V curve, and correlation between (b) Jsc and Vo, and (c) PCE and FF with ETL Np.
Table 4. Effect of various ETL Np.
ETL Np (cm'3) Voc (V) Jsc (mA/cmZ) FF (%) PCE (%)
1016 1.15 8.05 59.79 5.53
1017 1.15 8.05 59.89 5.53
1018 1.15 8.05 59.99 5.54
1019 1.15 8.05 60.03 5.55
1020 1.15 8.05 60.04 5.55
3.3.Effect of ETL N, often unaffected by the ETL Nt As a result, it is unlikely that

The ETL is a crucial layer of PSC and has a great impact
on the performance of the device [3, 36]. The ETL defect
density was varied from 103 to 107 cm?, and the
parameters FF, PCE, Vo, and Jsc were evaluated. Figure 4a
shows the J-V curve with varied N:. Figure 4b shows the
relationship between FF and PCE, while Figure 4c shows
the relationship between Voc and Jsc with varied ETL Nt The
outcome of the study shows that the ETL is effective at all
Nt during the simulation and has the ability to function
effectively in the proposed architectural configuration (see
Table 5). This indicates that the charge carrier diffusion
length and carrier lifetime within the perovskite layer are

a change in ETL Nt will have an influence on the charge
carrier diffusion length or carrier lifetime within the
perovskite layer. It's crucial to note that, variation in the
ETL N: can also have an indirect impact on device
performance by changing other factors such as charge
extraction efficiency, contact resistance, or the interfacial
impacts between the ETL and other layers.

3.4. Effect of absorber N;

The absorber N: is another crucial factor that must be
considered in order to develop the best possible device. It
is known that the absorber contains surface or bulk defects,
which may be interstitial, Schottky, Frenkel, or vacancy
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defects [10]. Furthermore, the absorber may also have
additional defects like dislocations and grain boundaries
[37]- According to some research, self-doping, which makes
up the p-type semiconductor, causes defects in the
perovskite absorber due to impurity [21, 38, 39]. The band
gap may become shallower or deeper as a result of these
defects. These defects have the potential to trap charge
carriers and promote non-radiative recombination.
Perovskite morphology and film quality have an impact on
PSC metrics [40], this has also been shown that
recombination inside the perovskite layer is prominent
when the ETL has low quality and film coverage, which
affects the Voc. To find the best-performing device, the effect
of changing absorber N: from 10! to 10> cm=? was

&8 4
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examined in this study. The J-V plot with varied absorber Nt
is shown in Figure 5a while the relationship between Jsc and
Voc with Nt and PCE and FF with N:are shown in Figures 5b
and c, respectively. As absorber N: increases, all of the
photovoltaic parameters decrease (see Table 6). This
decrease is attributed to interface recombination or trap-
assisted SRH. The shorter diffusion lengths which is caused
by an increase in absorber N: is responsible for the low
efficiency which increases carrier loss due recombination
[41]. This implies that when absorber N:increases, so does
the rate of carrier recombination, which accelerates solar
cell degradation and lowers performance. The absorber's
optimized N: of 1011 cm2 was chosen for further simulation.
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Fig. 4. (a) J-V curve, and correlation between (b) PCE and FF, and (c) Jsc and Vo with ETL Ne.

Table 5. Effect of varying ETL N..

ETL Nt (cm'3) Voe (V) Jsc(mA/cm2)  FF (%)  PCE (%)
1013 1.15 8.05 59.89 5.53
1014 1.15 8.05 59.89 5.53
1015 1.15 8.05 59.89 5.53
1016 1.15 8.05 59.89 5.53
1017 1.15 8.05 59.89 5.53
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Table 6. Effect of varying different Absorber N

Absorber Nt (cm-3) Voc (V) Jsc (mA/cm2) FF (%) PCE (%)
1011 1.17 8.11 81.97 7.79
1012 1.17 8.11 81.88 7.78
1013 1.17 8.11 81.16 7.71
1014 1.17 8.10 75.28 7.11
1015 1.15 8.05 59.89 5.53

3.5. Effect of absorber thickness

One of the key elements that affects PSC performance is
the thickness of the absorber layer; and therefore, it must
be carefully chosen for the device to work optimally. If the
thickness is too thin, the PSC device might not absorb all of
the energetic photons that strike it, and if it is too thick, it
will cause recombination channels to be formed within it
[42]. In this subsection, all other parameters were kept
constant while the thickness was varied from 0.1 to 0.7 pm.
Within this range only three values converged during the
simulation, while all other values show failure in
convergence. The device's J-V plots with varying
thicknesses are shown in Figure 6a. Comparison between
Jsc & Voc is shown in Figure 6b, while comparison between
PCE & FF is shown in Figure 6c. All the photovoltaic data
with different absorber thicknesses are compared in Table

7. According to the results, when the thickness of the
absorbing material increases from 0.1 to 0.7 pm, the Jsc
increases from 6.20 to 8.05 mA/cm?, which is attributed to
the high absorption coefficient of the perovskite absorber
[21]. This means that thicker absorbers provide a large
interactive area for light absorption, while thinner
absorbers provide less active area for light absorption. The
higher electron-hole recombination in the thicker absorber
(0.7 um) may be the cause of the decrease in Voc [43, 44] .
As absorber thickness increases, the FF steadily decreases,
which is explained by an increase in series resistance [45].
In terms of the PCE, it first increased from 5.87% at 0.1 um
to 6.08% at 0.4 um, and then it declined to 5.53% at 0.7 um.
This behavior can be explained as follows: at first, the
absorber's thickness (0.1 to 0.4 pm) was less than the hole
and electron diffusion lengths, which allowed the charge
carriers to reach the electrodes and increased the PCE. PCE
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decreases as a result of enhanced carrier recombination
when the thickness surpasses 0.4 pm [43, 46] . This
indicates that high resistance is created when moving
charge carriers to the front/back contacts at layers larger
than 0.4 um [21]. The optimized thickness was chosen at
0.4 um and used for further simulation.

3.6. Effect of absorber bandgap

The band gap of the absorber layer directly affects both
light absorption and charge carrier transport, making it a
critical factor in assessing the overall performance of
perovskite solar cells. In this work, the band gap was varied
between 1.9 and 2.3 eV during the simulation. The current-
voltage curves of the solar cells are shown in Figure 7a.
Comparison between Jsc & Voc is shown in Figure 7b, while
comparison between PCE & FF is shown in Figure 7c. The J-
V curve shape is affected by numerous variables, such as
the intrinsic qualities of the materials, the device
architecture, lighting conditions, and operating
temperature [47]. This curve can be used to determine key
photovoltaic parameters, including PCE, FF, Vo, and Jsc. It is
clear that variations in the band gap have a great impact on
these parameters, which highlights how important band-
gap tuning is for maximizing device performance.

The Jsc and PCE of the perovskite solar cells decrease as the
band gap rises from 1.9 to 2.3 eV. This is because only
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higher-energy (shorter wavelength) photons can be
absorbed, while lower-energy photons pass through
without aiding in the formation of photoexcited carriers.
The decrease in the photogenerated charge carriers is
responsible for the lower Jsc and worse overall device
performance.

The FF of the perovskite solar cells fluctuate with
changes in band gap, this is because the electronic
characteristics of the absorber affect the interaction
between charge transport, recombination, and resistive
losses [48]. Higher photocurrent generation can intensify
the effect of series resistance at intermediate band gaps,
resulting in a minor decrease in FF. As the band gap widens,
less carrier generation results in a lower current density,
which temporarily improves FF due to fewer resistive
losses. However, interfacial energy misalignments, higher
defect densities, and noticeable non-radiative
recombination are common problems for wide-band-gap
perovskites [47, 49]. These elements increase
recombination losses and prevent effective charge
extraction, which eventually causes FF to decline (see Table
8). The combined effects of improved resistive behavior at
intermediate band gaps and increased recombination
losses at higher band gaps cause the fill factor to fluctuate
rather than change uniformly as the band gap increases.
The optimized band gap was 1.9 eV and was used for
further simulation.
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Fig. 6. (a) J-V curve, and (b) correlation between (b) Jsc and Vi, and (c) PCE and FF with absorber thickness.
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Table 7. Effect of varying absorber thickness.
Absorber thickness Voc (V) Jsc (mA/cm?2) FF (%) PCE (%)
0.1 1.16 6.20 81.47 5.87
0.4 1.16 7.54 69.69 6.08
0.7 1.15 8.05 59.89 5.53
a T T T T T T T T T T T 16
16 —=—19eV ] i
—~ —e—21eV 115 (b) 115
g 141 —A—22eV — Vo 14
—v—23eV | ——]
E 12} . 1.10 113 ~
>10¢ 1 S {12 E
@ ~ 1.05F <
c 8 1 8 ] S
§ 1.00 4110 »
2r 1 0.95} 18
O 1 1 1 1 1
1 1 1 1 1 7
00 02 04 06 038 1.0 1.2 1.9 20 21 292 23
Voltage (V) Band gap (eV)
61 T T T T T
ol {8.0
59 -(C) ——FF 475
sl —— PCE R
g - 47.0 §’
I 56l {659
55F
46.0
54}
53l 155
1.9 2.0 2.1 2.2 2.3
Band gap (eV)
Fig. 7. (a) J-V curve, and (b) correlation between (b) Jsc and Vo, and (c) PCE and FF absorber band gap.
Table 8. Effect of varying absorber band gap.
Absorber band gap Voc (V) Jsc (mA/cm?) FF (%) PCE (%)
1.9 0.95 15.41 53.47 7.83
2.1 1.09 11.14 60.34 7.35
2.2 1.14 9.52 59.46 6.45
2.3 1.15 8.05 59.89 5.53
3.7.0ptimized device mA/cm?. The J-V characteristics of both optimized and

Optimal values were found after a careful analysis of the
different layer parameters, and these were subsequently
applied to further simulate the final device. The ETL Nb,
optimal thickness and ETL N:were found to be 1020 cm-3
and 10%> cm, respectively. Similarly, the absorber layer
band gap, thickness, and N: were optimized with respective
values of 1.9 eV, 0.4 um, and 101 cm2, The simulated device
parameters with this optimized device were FF of 76.56%,
Voc of 1.18 V, maximum PCE of 14.09%, and Jsc of 15.56

unoptimized devices are displayed in Figure 8.

3.8.Comparison of our SCAPS-1D results with other
results previously reported

The comparison of theoretical and experimental studies
using our current simulation is shown in Table 9. All of the
experimental results are noticeably worse than the
simulation results. Previous simulation studies showed
that it would take a lot of effort to achieve a comparable
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trademark for lead-free PSCs. To date, Cs2AgBiBrs
perovskite solar cells have so far shown the highest
efficiency of 6.37%, FF of 60.93%, Jsc of 11.4 mA/cm?, and
Voc 0f 0.92 V. After employing an N719 dye interlayer in our
simulation, the device demonstrated an optimized
efficiency of 14.09%, FF of 76.56%, Jsc of 15.56 mA/cm?, and
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Voc of 1.18 \' in the configuration
FTO/TiO2/Cs2AgBiBre/N719/spiro-OMeTAD/BC. By

simply integrating a layer of N719 between Cs2AgBiBrs and
spiro-OMeTAD, this study demonstrates better
performance than previously published data and has
opened a new avenue for achieving improved performance.

Iy
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Fig. 8. J-V for the unoptimized and optimized devices.

Table 9. J-V data from present study and previously published literature.

Device Study Voc Jsc FF (%) PCE References
V) (mA/cm?) (%)

FTO/TiO2/Cs2AgBiBre/Spiro-OMeTAD/Ag Exp 1.00 4.49 55.10 2.47 [24]
FTO/TiO2/Cs2AgBiBr6/N719/Spiro-OMeTAD/Ag Exp  1.02 5.13 5240  2.84 [24]
FTO/TiOz2/Cs1.96li0.01Nao.03AgBiBrs/C Exp 1.02 3.29 54.30 1.82 [50]
FTO/Ti02/Cs1.96lio.01Nao.03AgBiBre/C Exp 1.07 6.56 71.60 5.02 [50]
FTO/TiO2/Cs2Ag095GDo.osBiBrs/spiro-OMeTAD/au ~ Exp  0.91 5.58 7500  3.74 [20]
FTO/Ti/ZTO-Cs2Ago.95sMgo.osBiBre/Au Exp 091 5.40 81.10 3.98 [19]
FTO/TO2/Cs2AgBiBrs/C Exp 0.43 9.4 38.00 1.63 [51]
ITO/Sn02/Cs2AgBiBrs/spiro-OMeTAD/Au Exp 092 11.4 6093 637 [26]
FTO/Ti02/Mo-Cs2AgBiBrs/Spiro-OMeTAD/Au Exp. 0.94 5.59 67.00 3.95 [22]
FTO/Ti02/Cs2Ago.95Pr0.0sBiBrs/P3HT/Spiro- Exp. 0.90 5.01 81.1 3.88 [19]
OMeTAD

FTO/TiO2/IDL/Cs2AgBiBre/C Sim.  1.69 12.11 88.79 1821 [52]
ITO/Sn02/Cs2AgBiBrs/P3HT/Au Sim. 2.02 6.39 90.0 11.32 [53]
FTO/Sn02/Cs2AgBiBre/Spiro-OMeTAD /Au Sim. 1.30 17.44 62.59 14.29 [54]
ITO/CdS,/Cs2AgBiBrs/CuAlOz/Pt Sim.  1.64 491 88.74 7.6 [55]
FTO/ZnSe/CH3NH3Snl3/Graphene/Pt Sim. 093 31.81 78.45  23.18 [56]
FTO/TiO2/Cs2AgBiBrs/N719/Spiro-OMeTAD/BC Sim. 118 15.56 7656  14.09 This work

4. Conclusions

This study offers a comprehensive photovoltaic analysis
of Cs2AgBiBre perovskite solar cells using the SCAPS-1D
tool. The research was conducted to determine the effect of
introducing N719 dye as an interlayer between Cs2AgBiBrs
and Spiro-OMeTAD on the photovoltaic performance. The
pure PSC structure without N719 dye yielded a Voc 0f 0.81V,
Jsc of 7.61 mA/cm?2, FF of 46.68%, and PCE of 2.89%. A

similar structure with N719 dye was simulated and a Voc =
1.15V, Jsc = 8.05 mA/cm?, FF = 59.89%, and PCE = 5.53%
were obtained. After optimizing the ETL Np, ETL N,
absorber layer band gap, thickness, and N, their values of
1020 cm3, 1015 cm?, 1.9 eV, 0.4 pm, and 101! cmZ were
obtained respectively. The simulated device with these
optimized parameters were FF of 76.56%, Vo of 1.18 V,
maximum PCE of 14.09%, and Jsc of 15.56 mA/cm?. This



190

work has the potential to reduce carbon emissions by
offering new scientific insights for cleaner production
methods in industries that use perovskite materials for the
larger energy sector.
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