Investigating the Influence of Single Fe and Two Fe co-doping on the Structural and Magnetic Properties of Monolayer Pt2Te4 Pentagonal: A First Principle Study

Document Type : Original Article

Author

Department of Physic, Payame Noor University, Tehran, Iran

Abstract

The manipulation of magnetic characteristics in 2D materials is essential for their utilization in spintronic and magnetic devices. this study was carried out to investigate the doping process involving a single Fe dopant and the co-doping of two Fe impurities at the Pt site within the Pt2Te4 monolayer. The examination revealed that the introduction of a single iron (Fe) atom and a pair of Fe atoms into the non-magnetic semiconductor monolayer of Pt2Te4 leads to magnetic moments measuring 2 µB and 4µB, respectively. The origin of magnetic moments is observed predominantly around Fe-3d orbitals. In the instances of co-doping involving Fe-Fe substitution, four distinct configurations were examined. One of the configurations, specifically FeFe (1), was identified as the most stable due to its minimal energy level. This configuration also demonstrates a ferromagnetic coupling mechanism between the two Fe substitutions, a phenomenon that can be justified by the significant magnetic moment of 4µB.

Keywords

Main Subjects


© 2024 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1]      Song, B., Chen, X.L., Han, J.C., Wang, G., Bao, H.Q., Duan, L.B., Zhu, K.X., Li, H., Zhang, Z.H., Wang, W.Y. and Wang, W.J., 2011. Raman scattering and magnetizations studies of (Al, Cr)-codoped 4H-SiC. Journal of magnetism and magnetic materials, 323(22), pp.2876-2882.
[2]      Mallik, S.K., Jena, A.K., Sharma, N.K., Sahoo, S., Sahu, M.C., Gupta, S.K., Ahuja, R. and Sahoo, S., 2022. Transition metal substituted MoS2/WS2 van der Waals heterostructure for realization of dilute magnetic semiconductors. Journal of Magnetism and Magnetic Materials, 560, p.169567.
[3]      Gholami, M., Nazari, A., Azarin, K., Yazdanimeher, S. and Sadeghniya, B., 2013. Determination of the thickness and optical constants of metal oxide thin films by different methods. J. Basic Appl. Sci. Res, 3(5), pp.597-600.
[4]       Jafari, A., Ghoranneviss, M., Gholami, M. and Mostahsan, N., 2015. The role of deposition temperature and catalyst thickness in graphene domains on Cu. International Nano Letters, 5, pp.199-204.
[5J        Jafari, A., Ghoranneviss, M., Gholami, M., Salar Elahi, A. and Kavosi ghafi, A., 2016. The effects of percent and position of nitrogen atoms on electronic and thermoelectric properties of graphene nanoribbons. Journal of Inorganic and Organometallic Polymers and Materials, 26, pp.1095-1100.
[6]       Hajakbari, F., Hojabri, A., Gholami, M. and Ghoranneviss, M., 2009. Calculation of Cu2O thin film optical constants using the transmittance data. ISPC Proceedings, Bochum.
[7]         Gholami, M., Ebrahimi Sarai, M. and Hassanpour, M., 2022. Tunable magnetic induction of 1T-NiTe2 monolayer via V, Cr, Mn and Fe Transition metals atomic doping. Quarterly Journal of Optoelectronic, 4(2), pp.65-72.
[8]       Feng, N., Mi, W., Cheng, Y., Guo, Z., Schwingenschlögl, U. and Bai, H., 2014. First principles prediction of the magnetic properties of Fe-X 6 (X= S, C, N, O, F) doped monolayer MoS2. Scientific reports, 4(1), p.3987.
[9]        He, J., Zhou, P., Jiao, N., Ma, S.Y., Zhang, K.W., Wang, R.Z. and Sun, L.Z., 2014. Magnetic Exchange Coupling and Anisotropy of 3 d Transition Metal Nanowires on Graphyne. Scientific reports, 4(1), p.4014.
[10]   Jena, A.K., Mallik, S.K., Sahu, M.C., Sahoo, S., Sahoo, A.K., Sharma, N.K., Mohanty, J., Gupta, S.K., Ahuja, R. and Sahoo, S., 2022. Strain-mediated ferromagnetism and low-field magnetic reversal in Co doped monolayer WS2. Scientific reports, 12(1), p.2593.
[11]     Zhang, H., Zhang, Z., Zhan, Q., Liu, D., Zhao, P. and Cheng, Y., 2022. Recent advances of substitutionally doped tin dichalcogenides. Journal of Materials Chemistry C, 10(20), pp.7771-7782.
[12]     Wang, Y., Dong, S. and Yao, X., 2023. Frustration-induced magnetic bimerons in transition metal halide CoX2 (X= Cl, Br) monolayers. Physica E: Low-dimensional Systems and Nanostructures, 153, p.115776.
[13]   Xue, R., Han, R., Lin, X. and Wu, P., 2023. First-principles investigate on the electronic structure and magnetic properties of 3d transition metal doped honeycomb InS monolayer. Applied Surface Science, 608, p.155240.
[14]   Oyedele, A.D., Yang, S., Liang, L., Puretzky, A.A., Wang, K., Zhang, J., Yu, P., Pudasaini, P.R., Ghosh, A.W., Liu, Z. and Rouleau, C.M., 2017. PdSe2: pentagonal two-dimensional layers with high air stability for electronics. Journal of the American Chemical Society, 139(40), pp.14090-14097.
[15]    Ao, K.L., Shao, Y., Chan, I.N., Shi, X., Kawazoe, Y., Yang, M., Ng, K.W. and Pan, H., 2020. Design of novel pentagonal 2D transitional-metal sulphide monolayers for hydrogen evolution reaction. International Journal of Hydrogen Energy, 45(32), pp.16201-16209.
[16]     Qu, Y., Kwok, C.T., Shao, Y., Shi, X., Kawazoe, Y. and Pan, H., 2021. Pentagonal transition-metal (group X) chalcogenide monolayers: Intrinsic semiconductors for photocatalysis. International Journal of Hydrogen Energy, 46(14), pp.9371-9379.
[17]  Guo, Y., Zhou, J., Xie, H., Chen, Y. and Wang, Q., 2022. Screening transition metal-based polar pentagonal monolayers with large piezoelectricity and shift current. npj Computational Materials, 8(1), p.40.
[18]     Zhao, K., Guo, Y., Shen, Y., Wang, Q., Kawazoe, Y. and Jena, P., 2020. Penta-BCN: A new ternary pentagonal monolayer with intrinsic piezoelectricity. The journal of physical chemistry letters, 11(9), pp.3501-3506.
[19]  Liang, Q., Chen, Z., Zhang, Q. and Wee, A.T.S., 2022. Pentagonal 2D transition metal dichalcogenides: PdSe2 and beyond. Advanced Functional Materials, 32(38), p.2203555.
[20]     Wang, C.T. and Du, S., 2020. A unique pentagonal ntwork structure of the NiS2 monolayer with high stability and a tunable bandgap. Physical Chemistry Chemical Physics, 22(14), pp.7483-7488.
[21]    Gholami, M., Golsanamlou, Z. and Rahimpour Soleimani, H., 2022. Effects of 3d transition metal impurities and vacancy defects on electronic and magnetic properties of pentagonal Pd2S4: competition between exchange splitting and crystal fields. Scientific Reports, 12(1) p.10838.
[22]     Gholami, M. and Rahimpour Soleimani, H., 2022. Magnetic and electronic properties of Pd2S4 monolayer dichalcogenide under doping of atoms adjacent to sulfur atom. Quarterly Journal of Optoelectronic, 4(1), pp.105-111.
[23]      Lin, L., Pang, D., Shi, P., Su, L., Chen, Z. and Zhang, Z., 2022. First-principles calculations of magnetic and optical properties of (Mn, Mo) co-doped SnSe2. Physica Scripta, 97(8), p.085809.
[24]     Zhang, H., Wang, N., Wang, S. and Zhang, Y., 2020. Effect of doping 3d transition metal (Fe, Co, and Ni) on the electronic, magnetic and optical properties of pentagonal ZnO2 monolayer. Physica E: Low-dimensional Systems and Nanostructures, 117, p.113806.
[25]    Xie, L.Y. and Zhang, J.M., 2016. Electronic structures and magnetic properties of the transition-metal atoms (Mn, Fe, Co and Ni) doped WS2: a first-principles study. Superlattices and Microstructures, 98, pp.148-157.
[26]   Zhao, X., Chen, P., Yang, C., Zhang, X. and Wei, S., 2018. Electronic and magnetic properties of the N monodoping and (Mn, N)-codoped ZrS2. Journal of materials science, 53, pp.7466-7474.
[27]     Lin, L., Pang, D., Shi, P., Su, L., Chen, Z. and Zhang, Z., 2022. First-principles calculations of magnetic and optical properties of (Mn, Mo) co-doped SnSe2. Physica Scripta, 97(8), p.085809.
 [28]   Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P. and Sánchez-Portal, D., 2002. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), p.2745.
[29]     Ge, X., Zhou, X., Sun, D. and Chen, X., 2023. First-Principles Study of Structural and Electronic Properties of Monolayer PtX2 and Janus PtXY (X, Y= S, Se, and Te) via Strain Engineering. ACS omega, 8(6), pp.5715-5721.
[30]     Han, L., Zou, Y., Zeng, Q., Guan, X., Jia, B., Gao, Y., Liu, G. and Wu, L., 2022. Strong interlayer interaction in two-dimensional layered PtTe2. Journal of Solid State Chemistry, 305, p.122657.