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The manipulation of magnetic characteristics in 2D materials is essential for their utilization in 

spintronic and magnetic devices. this study was carried out to investigate the doping process 

involving a single Fe dopant and the co-doping of two Fe impurities at the Pt site within the Pt2Te4 

monolayer. The examination revealed that the introduction of a single iron (Fe) atom and a pair of Fe 

atoms into the non-magnetic semiconductor monolayer of Pt2Te4 leads to magnetic moments 

measuring 2 µB and 4µB, respectively. The origin of magnetic moments is observed predominantly 

around Fe-3d orbitals. In the instances of co-doping involving Fe-Fe substitution, four distinct 

configurations were examined. One of the configurations, specifically FeFe (1), was identified as the 

most stable due to its minimal energy level. This configuration also demonstrates a ferromagnetic 

coupling mechanism between the two Fe substitutions, a phenomenon that can be justified by the 

significant magnetic moment of 4µB. 
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1. Introduction 

      The identification of graphene represents a significant 
revolution in the exploration of different two-dimensional 
materials and the expansion of their applications across 
various physical fields such as spintronic, optoelectronics, 
and optical devices [1-9]. In contrast to graphene, which is 
composed of carbon atoms arranged in honeycomb 
structures, a variety of two-dimensional  materials are 
constructed using pentagonal rings of heterogeneous atoms 
that include transition metals (TM) and termination groups 
from the periodic table [10-16]. Pentagonal monolayers are 
primarily composed of transition metals (TM) such as Ni, 
Pd, and Pt, along with nonmetals from group 6 (X) like O, S, 
Se, and Te. These materials are typically represented by 
chemical formulas such as TMX2 and TM2X4 [17-22]. The 
arrangements derived from the two typically exhibit 
identical geometric patterns, with each pentagonal ring 
comprising of two transition metals (TM) and three 
chalcogen nonmetals (X). The distinguishing characteristics 

of the two groups are primarily attributed to the band gap 
values and dissimilar point groups. As an example, 
monolayer PdS2 exhibits a band gap of 1.2 eV and is 
classified under the point group p2-1/c, while monolayer 
Pd2S4 displays a band gap of 1.12 eV and belongs to the point 
group p2-1/b11 [21,22]. the modulating of the magnetic 
properties of two-dimensional materials is considered a 
crucial point in the spintronic devices application. 
Consequently, the introduction of a doping mechanism is 
regarded as exceedingly effective and feasible approach for 
inducing changes in magnetic properties substitutional 
doping of 3d transition metals that has recently attracted 
tremendous attention, and the following refers to the results 
of some studies. 3d TM doping at the Pd site for the Pd2S4 
monolayer shows that the maximum quantity of observed 
magnetic moments (around 3.2µB) is related to the Mn 
atom, and Sc and Ti impurities cannot induce magnetic 
moments in the system [22]. Recent research has shown 
that the introduction of Cr, Mn, and Fe doping into the SnSe2 
system leads to notable magnetization values of 3.40 µB, 4 
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µB, and 3.40µB, respectively [23]. The study conducted by 
Zhang demonstrate that the non-magnetic semiconductor 
penta-ZnO2 exhibits magnetic properties (1.93 µB, 2.96µB) in 
the presence of Fe and Co atoms [24]. As resulting of doping 
transition metals (Mn, Fe, Co, and Ni), the WS2 monolayer 
acquires magnetic moments of 1 µB, 2 µB, 3 µB, and 4 µB. 
Furthermore, this doping induces the manifestation of half-
metallic properties in the system [25]. One method utilized 
in scientific research to generate magnetism involves the co-
doping technique, where multiple atoms are replaced 
within the monolayers. The adding of two TM atoms on a 
ZrS2 monolayer has resulted in the observation of total 
magnetic moments measuring 1, 0.98, and 1.80 µB. The 
magnitudes of these magnetization values are dependent on 
the precise positioning of impurity atoms within the ZrS2 
monolayer [26]. Five distinct arrangements were examined 
to investigate the substitutional co-doping of Mn and Mo 
atoms in the SnSe2 monolayer, resulting in the achievement 
of total magnetic moment of 6µB [27]. In this study, we 
investigate the magnetic and electronic characteristics of a 
monolayer of pentagonal Pt2Te4 in presence of single and 
paired Fe dopant. The amount of magnetic moment due to 
doping of single and pair Fe impurities was observed to be 
2µB and 4µB, respectively, which originate from electrons of 
the Fe-3d orbital. Four different configurations have been 
considered for the two Fe atoms deployment, and the most 
stable state has been determined by evaluating 
ferromagnetic (FM) and antifomagnetic (AFM) energies.  
According to the calculations conducted, it was observed 
that two iron atoms exhibit a propensity towards a 
ferromagnetic alignment within the system. Prior to this 
study, no similar research has been published in the 
scientific articles and the co-doping technique of two 3 
atoms on pentagonal monolayers has been examined for the 
first time.  

2. Model and calculation methods  

The Orthorhombic crystal structure of the Pt2Te4 
monolayer is examined, comprising 18 platinum atoms and 
36 telluride atoms. This structure was generated by 
enlarging the primitive cell to a 4×4 supercell, as illustrated 
in Figure 1. The analysis of the single Pt2Te4 layer was 
conducted through calculations utilizing the Siesta 
simulation code, which based on spin-polarized density 
functional theory [28]. In order to inhibit the interaction 
between adjacent layers, a vacuum thickness of 20 
angstroms (20Å) is utilized. The plane wave cut-off energy 
is established at 200 eV and Monkhorst-Pack with a 7 × 7 × 
1 k-point configuration is employed within the first 
Brillouin zone. The structures endure geometric 
optimization procedures until the total force acting on each 
ion is reduced to below 0.01 eV/Å, with an energy tolerance 
of 10-5 eV set for electronic relaxation. 

3. Results and discussion 

      The Pt2Te4 monolayer is a kind of 2D nonmagnetic 
semiconductor from the orthorhombic group, resembling 
the pentagonal Pd2S4 and Pt2Se4 monolayers. In this 
material, each Pt atom forms covalent bonds with four Te 
atoms, as illustrated in Figure 1(a, b). The determined 
indirect band gap value is around 1.38 eV, which is in 

agreement with findings from previous theoretical 
calculations [29, 30]. Based on Figure 1(a), it is evident that 
both the spin-up and spin-down channels within the 
polarization band structure exhibit symmetrical 
characteristics, suggesting the non-magnetic nature of the 
pristine Pt2Te4 system. now, an examination will be 
conducted on the structural, electronic, and magnetic 
characteristics, with the presence of introducing one Fe 
dopant (at a concentration of 0.018%) and two Fe co-
dopants (at a concentration of 0.036%). The negligible 
values of doping concentrations indicate that the original 
structure configuration experience limited alteration and 
largely persist in a diluted state. Consequently, this 
enhances the reliability of analyzing the effects of doping 
mechanism. To simply investigate the mechanism of 
doping, the analysis is divided into two sections focusing on 
single Fe doping and two Fe-Fe co-doping, with each part 
being examined independently. 

3.1. configuration of singly Fe-doped Pt2Te4 

      Fig. 2(a) shows the substitution scheme of one Fe atom 
at the site of the Pt atom. The asymmetry observed in the 
spin-up and spin-down channels within the band structure 
depicted in Figure 2(b) and the density of states (DOS) 
illustrated in Figure 2(c) imply that doping Fe induces 
magnetic properties. Despite the emergence of extra 
impurity states caused by spin-down near the Fermi level, 
the Fermi level has not been interrupted, and the system 
maintains its semiconducting property. Figure 2(d, e, f) 
illustrates the density of states (DOS) for the Fe-3d orbital, 
along with the DOS for the six nearest Te-4p orbitals and 
the four Pt-5d orbitals surrounding the Fe atom. It is 
observed that impurities formed confined the band gap 
predominantly originate from mention orbitals. 

As demonstrated by the highlighted yellow rectangle 
inside Figure 2, the introduction of iron (Fe) doping results 
in  a total magnetic moment of 2µB for the single-layer 
Pt2Te4 structure. According to the data presented in Figure 
2(d, e, f, g), it can be seen that the predominant contribution 
to the total magnetic moment originates from the Fe-3d 
orbital, with a value of 2.2µB. It is worth noting that Te-4p 
and Pt-5d orbitals adjacent to Fe impurity, by producing 
magnetization values of -0.16μB and -0.012μB, play a 
magnetically insignificant role. Spin density of Figure 2(a) 
also confirms the extremely spin-up polarization of Fe 
atom, while it is not observable for Te and Pt atoms. 
Depending on the polarity of the local magnetic moment 
present on the atoms, the Fe-3d orbitals hybridize with Te-
4p and Pt-5d orbitals through antiferromagnetic (AFM) 
coupling. In order to precisely survey magnetism origin, we 
further explore the role of Fe-3d orbitals. Following doping 
Fe at Pt atom, Fe (3d6 4s2) transfer four electrons to four 
neighboring Te atoms as the result of electronegativity 
deference. Thus, the orbital of Fe atom forms as Fe+4(3d4 
4s0) configuration. In simple terms, the existence of the last 
four electrons in the Fe-3d orbital significantly influences 
the development of the magnetic moment. By simply 
observing Figure 3, it can be asserted that the spin-up 
states of the dyz, dz2, and dzx orbitals has fully been 
occupied. 
      Furthermore, it is probable that the fourth electron has 
occupied the dz2 orbital with spin-down. Consequently, the 
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net magnetization generated by three spin-up and one 
spin-down electron justify the calculated magnetic moment 
of 2µB for the Fe-doped system. 
 

 

Fig. 1. (a) Top and (b) side views for the atomic structure Monolayer Pt2Te4 Pentagonal. The white and gray balls represent the Pt and Te atoms, 
respectively. (c) Band structures of the defective of Pt2Te4 monolayer. The red lines represent the spin-up, the blue lines represent spin-down 
components, and the Fermi level is indicated by dotted line. 

 

 
Fig. 2. (a) The spin density. (b-c) Band structures. (d) total density of state (TDOS). the density of state (DOS) of (e) Fe-3d orbital, (f) Te-4p orbital 
and (g) Pt-5d orbital. 

 

 

Fig.3. The partial density of states (PDOS) corresponding to the Fe-3d orbitals. 
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3.2. configuration of pair Fe co-doped Pt2Te4 

      In this section, we explore the impact of dual Fe impurity 
doping on the electronic and magnetic moments of Fe-
doped Pt2Te4 and with results of previous section (see 
section 3.1) that focused on the consequences of single Fe 
atom doping has been compared. Based on the varying 
distances between two Pt atoms as depicted in Figure 4(a-
d), four distinct configurations may be identified for the 
placement of two Fe atoms in the co-doping process. One 
method for recognizing the most favorable structure 
energetically involve computing the energy differential 
between ferromagnetic (FME) and antiferromagnetic 
(AFME) states across four distinct systems. Given the 
formation energies' negative values, the system's 
ferromagnetic nature increases as the ratio ΔE(meV)= 
EAFM- EFM>0 becomes larger. As can be seen from Figure 
4(e), it is clear that the energy value amounts to 178 (meV) 
for the FeFe(1) configuration, which reveal the highest 
degree of stability in terms of ferromagnetism (FM) among 
four  structures. 

On the other hand, it is in good agreement with the 
obtained results associated with the spin density in Figure 
5(c). Hence, schematic of the co-doping of two Fe atoms 
consistent with Figure 4(a), represents possible and 
reasonable choice for our examination. Furthermore, the 
formation energy (EFeFe(i=1,2,3,4) for each Fe co-doped system 
has been calculated in comparison to the formation energy 
(EFeFe(4)) as outlined below: 

 
ΔE(meV)=EFeFe(4) –EFeFe(i=1,2,3,4) 
 

(1) 

      Hence, the FeFe(1) configuration demonstrate the 
greatest stability when ΔE reaches its maximum value, 
while the FeFe(4) state is considered the least stable when 
ΔE is equal to zero. 

Given that the system's most stable configuration, 
FeFe(1), has been found as the prevalent occurrence 
among the various distances, an analysis of its structural, 
electronic and magnetic characteristics can now be 
conducted. The locations of impurity atoms for doping are 
denoted as Fe1 and Fe2 in Figure 5(a). Furthermore, the 
distinct geometric positions of the neighboring Te and Pt 
atoms surrounding the two Fe atoms are denoted by 
varying indices. The group of atoms Te1, Te2, and Te3 is 
named as the first neighboring atoms of the Fe1 atom, 

whereas T4, T5, and T6 are labled as the first neighbors of 
the Fe2 atom. The Te0 atom has an identical distance in 
relation to the Fe1 and Fe2 atoms. As can be noticed on 
Figure 5(a), the closet neighboring Pt atoms near Fe1 and 
Fe2 impurities denoted as (Pt1, Pt2, Pt3) and (Pt4, Pt5, Pt6) 
respectively. 

The band structure analysis showed in Figure 4(b-c) 
and 5(b-c) illustrates that the introduction of Fe-Fe co-
doping results in greater number of states compared to the 
case of single Fe doping. These impurities are exclusively 
derived from spin-down channels, with no evidence of 
spin-up effects detected within the band gap. Similar to the 
previous section, here the band gap value has also reduced, 
however, the semiconductor characteristics persist in the 
Fe-Fe co-doped Pt2Te4 monolayer. The spin density plot 
represented in Figure 5(d) clearly highlight the Impressive 
magnetization concentration on two Fe atoms within the 
doped system, while no neighboring atoms exhibit 
polarization. The DOS of the total magnetic moment and its 
value are exhibited in Figure 5(e), where total magnetic 
moment 4µB represents the existence of the strong 
ferromagnetic coupling between two Fe atoms. 
      The magnetic moment originating from Fe1 and Fe2 
atoms is lonely attributed to the Fe1-3d and Fe2-3d 
orbitals, with calculated values of 2.17 µB and 2.15 µB, as 
illustrated in Figure 5(f). From Figure 5(f), it can be 
observed that the predominant states within the energy 
range of approximately -1.5 to -3 eV are those associated 
with spin-up. These states are considered as the primary 
magnetic source for the doped Pt2Te4 system. Based on the 
magnetization measurements of -0.14µB and -0.15µB for 
the (Te1, Te2, Te3)-4p and (Te4, Te5, Te6)-4p orbitals, as 
illustrated in Figure 5(g), it can be inferred that the (Te1, 
Te2, Te3) and (Te4, Te5, Te6) systems through 
antiferromagnetic   coupling with Fe1 and Fe2 impurities 
has been hybrid. But Te0 atom owing +0.12µB under the 
common influence of two impurities receive different 
magnetization distributions compared with other Te 
atoms, leading to the ferromagnetic   coupling formation 
with Fe1 and Fe2 metals (see Fig.5(h)). Finally, there are 
the nearest Pt atoms which observed around two Fe 
impurities. As depicted in Figure 5(i), these atoms rarely 
polarized resulting in not induceing a significant amount of 
magnetization in the system.  The downward spin direction 
results in the establishment of antiferromagnetic coupling 
with the spin of two Fe atoms. 
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Fig. 4. (a-d) Four different configurations corresponding to the Fe-Fe doping sites. (e) Schematics of energy difference, AFM and FM, for four states. 
(f) Stability energy diagram for four different systems. 

 

 
Fig. 5. (a) Top views of two Fe-doped atoms on monolayer Pt2Te4 at the site of two Pt atoms, also the nearest-neighboring of Pt and Te atoms. (b-c) 
The band structure. (d) The spin density. (e) total density of state (TDOS). ) the density of state (DOS) of (f Fe-3d orbital,(g) Te-4p orbitals, (h) Te-4p 
orbital (bonded to two Fe atoms), (i) Pt-5d orbital. 

4. Conclusion 

The research was conducted to explore the doping 
approach involving a lone Fe dopant and the co-doping of 
two Fe impurities at the Pt site within the Pt2Te4 
monolayer. The investigation demonstrated that 
introducing a single Fe atom and a pair of Fe atoms into the 
non-magnetic semiconductor Pt2Te4 monolayer results in 
the induction of magnetic moments measuring 2 µB and 
4µB, respectively. The origin of magnetic moments is 
observed predominantly around Fe-3d orbitals. The 
research explored four distinct configurations for instances 
of substitution doping of two Fe atoms. Among these, the 

FeFe(1) configuration was identified as the most stable due 
to its minimum energy state. This configuration also 
displays a ferromagnetic coupling mechanism between the 
two Fe atoms, which is confirmed by the significant 
magnetic moment of 4µB. These findings hold promise for 
diverse applications in the fields of spintronics and 
optoelectronics.   
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