Competition between Heisenberg and bond-dependent interactions driven an incommensurate ordering in honeycomb cobaltates

Document Type : Original Article

Authors

1 Department of Physics, Faculty of Science, Shahrekord University, Shahrekord, Iran

2 Department of Physics, Qom University of Technology, Qom 37181-46645, Iran

Abstract

Experimental observations show that the zero-field ground state of honeycomb-layered cobaltates is an incommensurate spiral order with an ordering wave vector along the line. However, in the presence of a magnetic field, the incommensurate magnetic phase becomes unstable and the quantum spin liquid phase becomes stable in this class of materials. Here, the central question we address is how to realize the incommensurate order theoretically. For this purpose, we are interested in studying the generalized Kitaev-Heisbenerg model and investigating the interplay effect between conventional Heisenberg and bond-dependent exchange interactions on the stability of the incommensurate spiral order. Our results show that the interplay between the second neighbor Heisenberg interaction and bond-dependent exchange interactions play a vital role in the stability of incommensurate phases. The competition between the second nearest nearest-neighbor interaction and the off-diagonal bond-directional exchange for  may place this material in proximity to a quantum spin liquid phase. The quantum spin liquid can be accessible for  in the presence of an external magnetic field.

Keywords

Main Subjects


© 2024 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Edwards, S. F., and Anderson, P. W., 1975. Theory of spin glasses, Journal of Physics F: Metal Physics, 5(5), p.965.
[2] Sherrington D., and Kirkpatrick S., 1975. Solvable Model of a Spin-Glass, Phys. Rev. Lett., 35(26), p.1792.
[3] Anderson, P. W., 1973. Resonating valence bonds: A new kind of insulator, Materials Research Bulletin, 8(2), pp. 153-160.
[4] Anderson, P. W., 1987. The resonating valence bond state in la2CuO4 and superconductivity, Science, 235(4793) pp.1196-1198.
[5] Balents, L., 2010. Spin liquids in frustrated magnets, Nature, 464(7286) pp.199-208.
[6] Zhou, Y., Kanoda, K., and Ng, T.-K., 2017. Quantum spin liquid states, Rev. Mod. Phys., 89(2) pp.02500.
[7] Broholm, C., Cava, R. J., Kivelson, S. A., Nocera, D. G., Norman M. R., Senthil, T., 2020. Quantum spin liquids, Science, 367(6475), p. eaay0668.
[8] Witczak-Krempa, W., Chen, G., Kim, Y. B., Balents, L., 2014. Correlated quantum phenomena in the strong spin-orbit regime. Ann. Rev. Conden. Matter Phys., 5(1) pp.57–82.
[9] Jackeli, G., Khaliullin, G., 2009. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett., 102(1), p.017205.
[10] Rau, J. G., Lee, Lee, E. K.-H., Kee, H. Y., 2016. Spin-orbit physics giving rise to novel phases in correlated systems: Iridates and related materials. Ann. Rev. Condens. Matter Phys. 79(1) pp.195–221.
[11] Rau, J. G., Lee, E. K.-H., Kee, H. Y., 2014.  Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett., 112(7), p.077204.
[12] Xu, G., Xu, Z., Tranquada, J. M., 2013. Absolute cross-section normalization of magnetic neutron scattering data. Rev. Sci. Inst., 84(8), pp.083906.
[13] Plumb, K. W., et al., 2014. α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B, 90(4), p.041112.
[14] Banerjee, A., et al., 2017. Neutron scattering in the proximate quantum spin liquid α-RuCl3., Science, 356(6342), pp.1055–1059.
[15] Takayama, T., et al., 2015. Hyperhoneycomb iridate β-Li2IrO3 as a platform for Kitaev magnetism. Phys. Rev. Lett., 114(7), p.077202.
[16] Gohlke, M., Wachtel, G., Yamaji, Y., Pollmann, F., Kim, Y. B., 2018. Quantum spin liquid signatures in Kitaev-like frustrated magnets. Phys. Rev. B, 97(7), p.075126.
[17] Schaffer, R., Bhattacharjee, S., Kim, Y. B., 2012.  Quantum phase transition in Heisenberg-Kitaev model. Phys. Rev. B, 86(22), p.224417.
[18] Nair, H. S., Brown, J. M., Coldren, E., Hester, G., Gelfand, M. P., Podlesnyak, A., Huang, Q., and Ross, K. A., 2018. Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2, Phys. Rev. B, 97(13), p.134409.
[19] Zhong, R., Gao, T., Ong, N. P., and Cava, R. J., 2020. Weak-field induced nonmagnetic state in a Co-based honeycomb, Science Advances, 6(4), p. eaay695.
[20] H. Liu and G. Khaliullin, Pseudospin exchange interactions in d7 cobalt compounds: Possible realization of the Kitaev model, Phys. Rev. B, 97 (2018) 014407.
[21] Sano, R., Kato, Y., and Motome, Y., 2018. Kitaev-Heisenberg Hamiltonian for high-spin d7 Mott insulators, Phys. Rev. B, 97(1), p.014408.
[22] Regnault, L.-P., Boullier, C., and Lorenzo, J., 2018. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2 frustrated honeycomb-lattice magnet, Heliyon, 4(1), p.e00507.
[23] Tu. C., Dai, D., Zhang, X., Zhao, C., Jin, X., Gao, B., Chen, T., Dai, P., and Li, S., Evidence for gapless quantum spin liquid in a honeycomb lattice, arXiv:2212.07322.
[24] Halloran, T., Desrochers, F., Zhang, E. Z., Chen, T., Chern, L. E., Xu, Z., Winn, B., Graves-Brook, M., Stone. M. B., Kolesnikov, A. I., Qiu, Y., Zhong, R., Cava, R., Kim, Y. B., and Broholm, C., 2023. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2, Proceedings of the National Academy of Sciences, 120(2), p.e2215509119.
[25] Kitaev A., 2006, Anyons in an exactly solved model and beyond, Annals of Physics, 321(1), pp.2111.
[26] Kitaev, A. Y., 2003. Fault-tolerant quantum computation by anyons, Annals of physics, 303(1), pp.2-30.
[27] Nayak, C., Simon, S. H., Stern, A., Freedman. M., and Das Sarma, S., 2008, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys., 80(3), p.1083.
[28] Luttinger, J. M., and Tisza, L., 1946. Theory of Dipole Interaction in Crystals, Phys. Rev., 70(11-12), p.954.
[29] Litvin, D. B., 1974. The Luttinger-Tisza method, Physica, 77(2), pp.205-219.
[30] Rau, J. G., Lee. E. K.-H., and Kee, H.-Y., (2014). Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit, Phys. Rev. Lett., 112(7), p.077204.
[31] Rau, J. G. and Kee, H.-Y., Trigonal distortion in the honeycomb iridates: Proximity of zigzag and spiral phases in Na2IrO3, arXiv:1408.4811.
[32] Zare, M.-H., Fazileh, F., Shahbazi, F., 2013. Zero-temperature phase diagram of the classical Kane-Mele Heisenberg model, Phys. Rev. B, 87(22), p.224416.
[33] Choi, S. K., Coldea, R., Kolmogorov, A. N., Lancaster, T., Mazin, I. I., Blundell, S. J., Radaelli, P. G., Singh, Y., Gegenwart, P., Choi, K. R., Cheong, S. W., Baker, P. J., Stock. C., and Taylor, J., 2012. Spin Waves and Revised Crystal Structure of Honeycomb Iridate Na2IrO3, Phys. Rev. Lett., 108(12), p.127204.
[34] Hwan, Chun S., Kim, J.-W., Kim, J., Zheng, H., Stoumpos, C. C., Malliakas, C. D., Mitchell, J. F., Mehlawat, K., Singh, Y., Choi, Y., Gog, T., Al-Zein, A., Sala, M. M., Krisch, M., Chaloupka, J., Jackeli, G., Khaliullin, G., and Kim, B. J., 2015. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3, Nat. Phys., 11(6), pp.462–466.
[35] Kimchi, I. and You, Y.-Z., 2011. Kitaev-Heisenberg-J2-J3 model for the iridates A2IrO3, Phys. Rev. B, 84(18), p.180407.
[36] Kim, J., Chaloupka, J., Singh, Y., Kim, J. W., Kim, B. J., Casa, D., Said., A., Huang, X., and Gog, T., 2020. Dynamic Spin Correlations in the Honeycomb Lattice Na2IrO3 Measured by Resonant Inelastic x-Ray Scattering, Phys. Rev. X, 10(2), p.021034.
[37] Plumb, K. W., Clancy, J. P., Sandilands, L. J., Shankar, V. V., Hu, Y. F., Burch, K. S., Kee, H. Y., and Kim, Y. J., 2014. α−RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice, Phys. Rev. B, 90(4), p.041112(R).
[38] Kubota, Y., Tanaka, H., Ono, T., Narumi, Y., and Kindo, K., 2015. Successive magnetic phase transitions in α−RuC3: XY-like frustrated magnet on the honeycomb lattice, Phys. Rev. B, 91(9), p.094422.
[39] Baek, S. H., Do, S. H., Choi, K. Y., Kwon, Y. S., Wolter, A. U. B., Nishimoto, Van Den Brink, S., J., and Böchner. B., 2017. Successive magnetic phase transitions in α−RuCl3: XY-like frustrated magnet on the honeycomb lattice, Phys. Rev. Lett. 119(3), p.037201.
[40] Do, S. H., Park, S. Y., Yoshitake, J., Nasu, J., Motome, Y., Kwon, Y. S., Adroja, D. T., Voneshen, D. J., Kim, K., Jang, T. H., Park, J. H., Choi, K. Y., and Ji, S., 2017. Majorana fermions in the Kitaev quantum spin system α-RuCl3, Nat. Phys., 13(11), pp.1079–1084.
[41] Banerjee, A., et al, 2016. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet, Nat. Mater., 15(7), pp.733–740.
[42] Kaib, David A. S., Winter, Stephen M., and Valentí, Roser, 2019. Kitaev honeycomb models in magnetic fields: Dynamical response and dual models, Phys. Rev. B, 100(14), p.144445.
[43] Kim, Chaebin, et al, 2022. Antiferromagnetic Kitaev interaction in Jeff = 1/2 cobalt honeycomb materials Na3Co2SbO6 and Na2Co2TeO6, Phys.: Condens. Matter, 34(4), p.045802.
[44] Liu, Xiaoyu, and Kee, Hae-Young, 2023. Non-Kitaev versus Kitaev honeycomb cobaltates. Phys. Rev. B. 107(9), p.054420.