[1] Edwards, S. F., and Anderson, P. W., 1975. Theory of spin glasses, Journal of Physics F: Metal Physics, 5(5), p.965.
[2] Sherrington D., and Kirkpatrick S., 1975. Solvable Model of a Spin-Glass, Phys. Rev. Lett., 35(26), p.1792.
[3] Anderson, P. W., 1973. Resonating valence bonds: A new kind of insulator, Materials Research Bulletin, 8(2), pp. 153-160.
[4] Anderson, P. W., 1987. The resonating valence bond state in la2CuO4 and superconductivity, Science, 235(4793) pp.1196-1198.
[5] Balents, L., 2010. Spin liquids in frustrated magnets, Nature, 464(7286) pp.199-208.
[6] Zhou, Y., Kanoda, K., and Ng, T.-K., 2017. Quantum spin liquid states, Rev. Mod. Phys., 89(2) pp.02500.
[7] Broholm, C., Cava, R. J., Kivelson, S. A., Nocera, D. G., Norman M. R., Senthil, T., 2020. Quantum spin liquids, Science, 367(6475), p. eaay0668.
[8] Witczak-Krempa, W., Chen, G., Kim, Y. B., Balents, L., 2014. Correlated quantum phenomena in the strong spin-orbit regime. Ann. Rev. Conden. Matter Phys., 5(1) pp.57–82.
[9] Jackeli, G., Khaliullin, G., 2009. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett., 102(1), p.017205.
[10] Rau, J. G., Lee, Lee, E. K.-H., Kee, H. Y., 2016. Spin-orbit physics giving rise to novel phases in correlated systems: Iridates and related materials. Ann. Rev. Condens. Matter Phys. 79(1) pp.195–221.
[11] Rau, J. G., Lee, E. K.-H., Kee, H. Y., 2014. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett., 112(7), p.077204.
[12] Xu, G., Xu, Z., Tranquada, J. M., 2013. Absolute cross-section normalization of magnetic neutron scattering data. Rev. Sci. Inst., 84(8), pp.083906.
[13] Plumb, K. W., et al., 2014. α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B, 90(4), p.041112.
[14] Banerjee, A., et al., 2017. Neutron scattering in the proximate quantum spin liquid α-RuCl3., Science, 356(6342), pp.1055–1059.
[15] Takayama, T., et al., 2015. Hyperhoneycomb iridate β-Li2IrO3 as a platform for Kitaev magnetism. Phys. Rev. Lett., 114(7), p.077202.
[16] Gohlke, M., Wachtel, G., Yamaji, Y., Pollmann, F., Kim, Y. B., 2018. Quantum spin liquid signatures in Kitaev-like frustrated magnets. Phys. Rev. B, 97(7), p.075126.
[17] Schaffer, R., Bhattacharjee, S., Kim, Y. B., 2012. Quantum phase transition in Heisenberg-Kitaev model. Phys. Rev. B, 86(22), p.224417.
[18] Nair, H. S., Brown, J. M., Coldren, E., Hester, G., Gelfand, M. P., Podlesnyak, A., Huang, Q., and Ross, K. A., 2018. Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2, Phys. Rev. B, 97(13), p.134409.
[19] Zhong, R., Gao, T., Ong, N. P., and Cava, R. J., 2020. Weak-field induced nonmagnetic state in a Co-based honeycomb, Science Advances, 6(4), p. eaay695.
[20] H. Liu and G. Khaliullin, Pseudospin exchange interactions in d7 cobalt compounds: Possible realization of the Kitaev model, Phys. Rev. B, 97 (2018) 014407.
[21] Sano, R., Kato, Y., and Motome, Y., 2018. Kitaev-Heisenberg Hamiltonian for high-spin d7 Mott insulators, Phys. Rev. B, 97(1), p.014408.
[22] Regnault, L.-P., Boullier, C., and Lorenzo, J., 2018. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2 frustrated honeycomb-lattice magnet, Heliyon, 4(1), p.e00507.
[23] Tu. C., Dai, D., Zhang, X., Zhao, C., Jin, X., Gao, B., Chen, T., Dai, P., and Li, S., Evidence for gapless quantum spin liquid in a honeycomb lattice, arXiv:2212.07322.
[24] Halloran, T., Desrochers, F., Zhang, E. Z., Chen, T., Chern, L. E., Xu, Z., Winn, B., Graves-Brook, M., Stone. M. B., Kolesnikov, A. I., Qiu, Y., Zhong, R., Cava, R., Kim, Y. B., and Broholm, C., 2023. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2, Proceedings of the National Academy of Sciences, 120(2), p.e2215509119.
[25] Kitaev A., 2006, Anyons in an exactly solved model and beyond, Annals of Physics, 321(1), pp.2111.
[26] Kitaev, A. Y., 2003. Fault-tolerant quantum computation by anyons, Annals of physics, 303(1), pp.2-30.
[27] Nayak, C., Simon, S. H., Stern, A., Freedman. M., and Das Sarma, S., 2008, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys., 80(3), p.1083.
[28] Luttinger, J. M., and Tisza, L., 1946. Theory of Dipole Interaction in Crystals, Phys. Rev., 70(11-12), p.954.
[29] Litvin, D. B., 1974. The Luttinger-Tisza method, Physica, 77(2), pp.205-219.
[30] Rau, J. G., Lee. E. K.-H., and Kee, H.-Y., (2014). Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit, Phys. Rev. Lett., 112(7), p.077204.
[31] Rau, J. G. and Kee, H.-Y., Trigonal distortion in the honeycomb iridates: Proximity of zigzag and spiral phases in Na2IrO3, arXiv:1408.4811.
[32] Zare, M.-H., Fazileh, F., Shahbazi, F., 2013. Zero-temperature phase diagram of the classical Kane-Mele Heisenberg model, Phys. Rev. B, 87(22), p.224416.
[33] Choi, S. K., Coldea, R., Kolmogorov, A. N., Lancaster, T., Mazin, I. I., Blundell, S. J., Radaelli, P. G., Singh, Y., Gegenwart, P., Choi, K. R., Cheong, S. W., Baker, P. J., Stock. C., and Taylor, J., 2012. Spin Waves and Revised Crystal Structure of Honeycomb Iridate Na2IrO3, Phys. Rev. Lett., 108(12), p.127204.
[34] Hwan, Chun S., Kim, J.-W., Kim, J., Zheng, H., Stoumpos, C. C., Malliakas, C. D., Mitchell, J. F., Mehlawat, K., Singh, Y., Choi, Y., Gog, T., Al-Zein, A., Sala, M. M., Krisch, M., Chaloupka, J., Jackeli, G., Khaliullin, G., and Kim, B. J., 2015. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3, Nat. Phys., 11(6), pp.462–466.
[35] Kimchi, I. and You, Y.-Z., 2011. Kitaev-Heisenberg-J2-J3 model for the iridates A2IrO3, Phys. Rev. B, 84(18), p.180407.
[36] Kim, J., Chaloupka, J., Singh, Y., Kim, J. W., Kim, B. J., Casa, D., Said., A., Huang, X., and Gog, T., 2020. Dynamic Spin Correlations in the Honeycomb Lattice Na2IrO3 Measured by Resonant Inelastic x-Ray Scattering, Phys. Rev. X, 10(2), p.021034.
[37] Plumb, K. W., Clancy, J. P., Sandilands, L. J., Shankar, V. V., Hu, Y. F., Burch, K. S., Kee, H. Y., and Kim, Y. J., 2014. α−RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice, Phys. Rev. B, 90(4), p.041112(R).
[38] Kubota, Y., Tanaka, H., Ono, T., Narumi, Y., and Kindo, K., 2015. Successive magnetic phase transitions in α−RuC3: XY-like frustrated magnet on the honeycomb lattice, Phys. Rev. B, 91(9), p.094422.
[39] Baek, S. H., Do, S. H., Choi, K. Y., Kwon, Y. S., Wolter, A. U. B., Nishimoto, Van Den Brink, S., J., and Böchner. B., 2017. Successive magnetic phase transitions in α−RuCl3: XY-like frustrated magnet on the honeycomb lattice, Phys. Rev. Lett. 119(3), p.037201.
[40] Do, S. H., Park, S. Y., Yoshitake, J., Nasu, J., Motome, Y., Kwon, Y. S., Adroja, D. T., Voneshen, D. J., Kim, K., Jang, T. H., Park, J. H., Choi, K. Y., and Ji, S., 2017. Majorana fermions in the Kitaev quantum spin system α-RuCl3, Nat. Phys., 13(11), pp.1079–1084.
[41] Banerjee, A., et al, 2016. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet, Nat. Mater., 15(7), pp.733–740.
[42] Kaib, David A. S., Winter, Stephen M., and Valentí, Roser, 2019. Kitaev honeycomb models in magnetic fields: Dynamical response and dual models, Phys. Rev. B, 100(14), p.144445.
[43] Kim, Chaebin, et al, 2022. Antiferromagnetic Kitaev interaction in Jeff = 1/2 cobalt honeycomb materials Na3Co2SbO6 and Na2Co2TeO6, Phys.: Condens. Matter, 34(4), p.045802.
[44] Liu, Xiaoyu, and Kee, Hae-Young, 2023. Non-Kitaev versus Kitaev honeycomb cobaltates. Phys. Rev. B. 107(9), p.054420.