[1] Rahman, M.H., Chowdhury, E.H., Redwan, D.A. and Hong, S., 2021. Computational characterization of thermal and mechanical properties of single and bilayer germanene nanoribbon. Computational Materials Science, 190, p.110272.
[2] Kalami, R. and Ketabi, S.A., 2023. Role of Linear Defects on the Electronic, Transport, and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons. Journal of Electronic Materials, pp.1-11.
[3] Kalami, R. and Ketabi, S.A., 2023. Electronic and Thermoelectric Properties of Armchair-Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays. Journal of Electronic Materials, 52(10), pp.6566-6577.
[4] Shokri, A. and Salami, N., 2019. Thermoelectric properties in monolayer MoS 2 nanoribbons with Rashba spin–orbit interaction. Journal of Materials Science, 54(1), pp.467-482.
[5] Checkelsky, J.G. and Ong, N.P., 2009. Thermopower and Nernst effect in graphene in a magnetic field. Physical Review B, 80(8), p.081413.
[6] Yan, Y., Liang, Q.F., Zhao, H., Wu, C.Q. and Li, B., 2012. Thermoelectric properties of one-dimensional graphene antidot arrays. Physics Letters A, 376(35), pp.2425-2429.
[7] Domínguez-Adame, F., Martín-González, M., Sánchez, D. and Cantarero, A., 2019. Nanowires: A route to efficient thermoelectric devices. Physica E: Low-dimensional Systems and Nanostructures, 113, pp.213-225.
[8] Núñez, C., Saiz-Bretín, M., Orellana, P.A., Rosales, L. and Domínguez-Adame, F., 2020. Tuning the thermoelectric response of silicene nanoribbons with vacancies. Journal of Physics: Condensed Matter, 32(27), p.275301.
[9] Gayner, C. and Kar, K.K., 2016. Recent advances in thermoelectric materials. Progress in Materials Science, 83, pp.330-382. [10] Yu, C., Shi, L., Yao, Z., Li, D. and Majumdar, A., 2005. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano letters, 5(9), pp.1842-1846.
[11] Sadeghi, H., Sangtarash, S. and Lambert, C.J., 2015. Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons. Beilstein journal of nanotechnology, 6(1), pp.1176-1182.
[12] Ouyang, Y. and Guo, J., 2009. A theoretical study on thermoelectric properties of graphene nanoribbons. Applied Physics Letters, 94(26).
[13] Ni, X., Liang, G., Wang, J.S. and Li, B., 2009. Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons. Applied Physics Letters, 95(19).
[14] Chen, Y., Jayasekera, T., Calzolari, A., Kim, K.W. and Nardelli, M.B., 2010. Thermoelectric properties of graphene nanoribbons, junctions and superlattices. Journal of Physics: Condensed Matter, 22(37), p.372202.
[15] Yu, J.K., Mitrovic, S., Tham, D., Varghese, J. and Heath, J.R., 2010. Reduction of thermal conductivity in phononic nanomesh structures. Nature nanotechnology, 5(10), pp.718-721.
[16] Markussen, T., Jauho, A.P. and Brandbyge, M., 2009. Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties. Physical Review B, 79(3), p.035415.
[17] Liu, L. and Chen, X., 2010. Effect of surface roughness on thermal conductivity of silicon nanowires. Journal of Applied Physics, 107(3).
[18] Pan, L., Liu, H.J., Tan, X.J., Lv, H.Y., Shi, J., Tang, X.F. and Zheng, G., 2012. Thermoelectric properties of armchair and zigzag silicene nanoribbons. Physical Chemistry Chemical Physics, 14(39), pp.13588-13593.
[19] Pop, E., Varshney, V. and Roy, A.K., 2012. Thermal properties of graphene: Fundamentals and applications. MRS bulletin, 37(12), pp.1273-1281.
[20] Saiz-Bretín, M., Malyshev, A.V., Domínguez-Adame, F., Quigley, D. and Römer, R.A., 2018. Lattice thermal conductivity of graphene nanostructures. Carbon, 127, pp.64-69.
[21] Nouri, N., Rashedi, G. and Karbaschi, H., 2020. Analysis of electronical properties of Bismuth and Silicene antidot in the presence of strain using the four-orbital tight-binding method. Physics Letters A, 384(17), p.126364.
[22] Kim, M., Safron, N.S., Han, E., Arnold, M.S. and Gopalan, P., 2010. Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano letters, 10(4), pp.1125-1131.
[23] Bai, J., Zhong, X., Jiang, S., Huang, Y. and Duan, X., 2010. Graphene nanomesh. Nature nanotechnology, 5(3), pp.190-194.
[24] Matthes, L., Pulci, O. and Bechstedt, F., 2014. Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. New Journal of Physics, 16(10), p.105007.
[25] Samipour, A., Dideban, D. and Heidari, H., 2020. Impact of an antidote vacancy on the electronic and transport properties of germanene nanoribbons: A first principles study. Journal of Physics and Chemistry of Solids, 138, p.109289.
[26] Shirdel-Havar, M. and Farghadan, R., 2018. Spin caloritronics in spin semiconducting armchair graphene nanoribbons. Physical Review B, 97(23), p.235421.
[27] Goharrizi, A.Y., Pourfath, M., Fathipour, M. and Kosina, H., 2012. Device performance of graphene nanoribbon field-effect transistors in the presence of line-edge roughness. IEEE Transactions on electron devices, 59(12), pp.3527-3532.
[28] Klimeck, G., Ahmed, S.S., Bae, H., Kharche, N., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F. and Prada, M., 2007. Atomistic simulation of realistically sized nanodevices using NEMO 3-D—Part I: Models and benchmarks. IEEE Transactions on Electron Devices, 54(9), pp.2079-2089.
[29] Klimeck, G., Ahmed, S.S., Bae, H., Kharche, N., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F. and Prada, M., 2007. Atomistic simulation of realistically sized nanodevices using NEMO 3-D—Part I: Models and benchmarks. IEEE Transactions on Electron Devices, 54(9), pp.2079-2089.
[30] Liu, C.C., Jiang, H. and Yao, Y., 2011. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Physical Review B, 84(19), p.195430.
[31] Datta, S., 1997. Electronic transport in mesoscopic systems. Cambridge university press.
[32] Kalami, R. and Ketabi, S.A., 2021. Spin-dependent thermoelectric properties of a magnetized zigzag graphene nanoribbon. Progress in Physics of Applied Materials, 1(1), pp.1-6. [33] Yang, K., Cahangirov, S., Cantarero, A., Rubio, A. and D'Agosta, R., 2014. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Physical Review B, 89(12), p.125403 [34] Banoozadeh, B., Pilevar Shahri, R., Benam, M., Baedi, J. and Kafi, F., 2022. Theoretical investigation and comparison of thermoelectric properties of porous and perfect phosphorene along armchair direction. Journal of Research on Many-body Systems, 12(2), pp.9-19. [35] Gholami, Z. and Khoeini, F., 2021. Vacancy tuned thermoelectric properties and high spin filtering performance in graphene/silicene heterostructures. Scientific Reports, 11(1), p.15320.
[36] Peng, Y.N., Yu, J.F., Cao, X.H., Wu, D., Jia, P.Z., Zhou, W.X. and Chen, K.Q., 2020. An efficient mechanism for enhancing the thermoelectricity of twin graphene nanoribbons by introducing defects. Physica E: Low-dimensional Systems and Nanostructures, 122, p.114160. [37] Banerjee, L., Sengupta, A. and Rahaman, H., 2018. Carrier transport and thermoelectric properties of differently shaped germanene (Ge) and silicene (Si) nanoribbon interconnects. IEEE Transactions on Electron Devices, 66(1), pp.664-669.