[1] Hunt, B., Sanchez-Yamagishi, J.D., Young, A.F., Yankowitz, M., LeRoy, B.J., Watanabe, K., Taniguchi, T., Moon, P., Koshino, M., Jarillo-Herrero, P. and Ashoori, R.C., 2013. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science, 340(6139), pp.1427-1430.
[2] Dean, C.R., Wang, L., Maher, P., Forsythe, C., Ghahari, F., Gao, Y., Katoch, J., Ishigami, M., Moon, P., Koshino, M. and Taniguchi, T., 2013. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 497(7451), pp.598-602.
[3] Wang, L., Gao, Y., Wen, B., Han, Z., Taniguchi, T., Watanabe, K., Koshino, M., Hone, J. and Dean, C.R., 2015. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science, 350(6265), pp.1231-1234.
[4] Spanton, E.M., Zibrov, A.A., Zhou, H., Taniguchi, T., Watanabe, K., Zaletel, M.P. and Young, A.F., 2018. Observation of fractional Chern insulators in a van der Waals heterostructure. Science, 360(6384), pp.62-66.
[5] Cao, Y., Fatemi, V., Demir, A., Fang, S., Tomarken, S.L., Luo, J.Y., Sanchez-Yamagishi, J.D., Watanabe, K., Taniguchi, T., Kaxiras, E. and Ashoori, R.C., 2018. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556(7699), pp.80-84.
[6] Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E. and Jarillo-Herrero, P., 2018. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556(7699), pp.43-50.
[7] Dos Santos, J.L., Peres, N.M.R. and Neto, A.C., 2007. Graphene bilayer with a twist: Electronic structure. Physical review letters, 99(25), p.256802.
[8] Li, G., Luican, A., Lopes dos Santos, J.M.B., Castro Neto, A.H., Reina, A., Kong, J. and Andrei, E.Y., 2010. Observation of Van Hove singularities in twisted graphene layers. Nature physics, 6(2), pp.109-113.
[9] Bistritzer, R. and MacDonald, A.H., 2011. Moiré bands in twisted double-layer graphene. Proceedings of the National Academy of Sciences, 108(30), pp.12233-12237.
[10] Mele, E.J., 2010. Commensuration and interlayer coherence in twisted bilayer graphene. Physical Review B, 81(16), p.161405.
[11] Luican, A., Li, G., Reina, A., Kong, J., Nair, R.R., Novoselov, K.S., Geim, A.K. and Andrei, E.Y., 2011. Single-layer behavior and its breakdown in twisted graphene layers. Physical review letters, 106(12), p.126802. [12] Dos Santos, J.L., Peres, N.M.R. and Neto, A.C., 2012. Continuum model of the twisted graphene bilayer. Physical review B, 86(15), p.155449.
[13] Moon, P. and Koshino, M., 2012. Energy spectrum and quantum Hall effect in twisted bilayer graphene. Physical Review B, 85(19), p.195458.
[14] Jung, J., Raoux, A., Qiao, Z. and MacDonald, A.H., 2014. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Physical Review B, 89(20), p.205414. [15] Wong, D., Wang, Y., Jung, J., Pezzini, S., DaSilva, A.M., Tsai, H.Z., Jung, H.S., Khajeh, R., Kim, Y., Lee, J. and Kahn, S., 2015. Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Physical Review B, 92(15), p.155409.
[16] Fang, S. and Kaxiras, E., 2016. Electronic structure theory of weakly interacting bilayers. Physical Review B, 93(23), p.235153.
[17] Kim, K., DaSilva, A., Huang, S., Fallahazad, B., Larentis, S., Taniguchi, T., Watanabe, K., LeRoy, B.J., MacDonald, A.H. and Tutuc, E., 2017. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proceedings of the National Academy of Sciences, 114(13), pp.3364-3369.
[18] Nam, N.N. and Koshino, M., 2017. Lattice relaxation and energy band modulation in twisted bilayer graphene. Physical Review B, 96(7), p.075311.
[19] Efimkin, D.K. and MacDonald, A.H., 2018. Helical network model for twisted bilayer graphene. Physical Review B, 98(3), p.035404.
[20] Guinea, F. and Walet, N.R., 2018. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proceedings of the National Academy of Sciences, 115(52), pp.13174-13179. [21] Zou, L., Po, H.C., Vishwanath, A. and Senthil, T., 2018. Band structure of twisted bilayer graphene: Emergent symmetries, commensurate approximants, and Wannier obstructions. Physical Review B, 98(8), p.085435. [22] Xu, C. and Balents, L., 2018. Topological superconductivity in twisted multilayer graphene. Physical review letters, 121(8), p.087001.
[23] Roy, B. and Juričić, V., 2019. Unconventional superconductivity in nearly flat bands in twisted bilayer graphene. Physical Review B, 99(12), p.121407.
[24] You, Y.Z. and Vishwanath, A., 2019. Superconductivity from valley fluctuations and approximate SO (4) symmetry in a weak coupling theory of twisted bilayer graphene. npj Quantum Materials, 4(1), p.16.
[25] Huang, T., Zhang, L. and Ma, T., 2019. Antiferromagnetically ordered mott insulator and d+ id superconductivity in twisted bilayer graphene: A quantum monte carlo study. Science Bulletin, 64(5), pp.310-314. [26] Isobe, H., Yuan, N.F. and Fu, L., 2018. Unconventional superconductivity and density waves in twisted bilayer graphene. Physical Review X, 8(4), p.041041.
[27] Wu, F., MacDonald, A.H. and Martin, I., 2018. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Physical review letters, 121(25), p.257001.
[28] Dodaro, J.F., Kivelson, S.A., Schattner, Y., Sun, X.Q. and Wang, C., 2018. Phases of a phenomenological model of twisted bilayer graphene. Physical Review B, 98(7), p.075154.
[29] Po, H.C., Zou, L., Vishwanath, A. and Senthil, T., 2018. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Physical Review X, 8(3), p.031089.
[30] Padhi, B., Setty, C. and Phillips, P.W., 2018. Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization, not Mott insulation. Nano letters, 18(10), pp.6175-6180.
[31] Yuan, N.F. and Fu, L., 2018. Model for the metal-insulator transition in graphene superlattices and beyond. Physical Review B, 98(4), p.045103.
[32] Chen, G., Jiang, L., Wu, S., Lv, B., Li, H., Watanabe, K., Taniguchi, T., Shi, Z., Zhang, Y. and Wang, F., 2019. Gate-Tunable Mott Insulator in Trilayer Graphene-Boron Nitride Moiré Superlattice. In APS March Meeting Abstracts (Vol. 2019, pp. S14-008).
[33] Naik, M.H. and Jain, M., 2018. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Physical review letters, 121(26), p.266401.
[34] Wu, F., Lovorn, T., Tutuc, E., Martin, I. and MacDonald, A.H., 2019. Topological insulators in twisted transition metal dichalcogenide homobilayers. Physical review letters, 122(8), p.086402.
[35] Zhang, Z., Wang, Y., Watanabe, K., Taniguchi, T., Ueno, K., Tutuc, E. and LeRoy, B.J., 2020. Flat bands in twisted bilayer transition metal dichalcogenides. Nature Physics, 16(11), pp.1093-1096.
[36] Wang, L., Shih, E.M., Ghiotto, A., Xian, L., Rhodes, D.A., Tan, C., Claassen, M., Kennes, D.M., Bai, Y., Kim, B. and Watanabe, K., 2020. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature materials, 19(8), pp.861-866.
[37] Muruganandam, V., Sajjan, M. and Kais, S., 2023. Foray into the topology of poly-bi-[8]-annulenylene. arXiv preprint arXiv:2305.06264. [38] Zare, M.H. and Mosadeq, H., 2021. Spin liquid in twisted homobilayers of group-VI dichalcogenides. Physical Review B, 104(11), p.115154.
[39] Zare, M.H., Fazileh, F. and Shahbazi, F., 2013. Zero-temperature phase diagram of the classical Kane-Mele-Heisenberg model. Physical Review B, 87(22), p.224416.
[40] Baskaran, G., Zou, Z. and Anderson, P.W., 1993. The resonating valence bond state and high-Tc superconductivity—a mean field theory. Solid state communications, 88(11-12), pp.853-856.
[41] Lee, P.A., Nagaosa, N. and Wen, X.G., 2006. Doping a Mott insulator: Physics of high-temperature superconductivity. Reviews of modern physics, 78(1), p.17.
[42] Sigrist, M. and Ueda, K., 1991. Phenomenological theory of unconventional superconductivity. Reviews of Modern physics, 63(2), p.239.
[43] Black-Schaffer, A.M. and Doniach, S., 2007. Resonating valence bonds and mean-field d-wave superconductivity in graphite. Physical Review B, 75(13), p.134512. [44] Zare, M.H., 2020. Competition between spin-singlet and-triplet superconducting states in the doped extended Kitaev-Heisenberg model. Iranian Journal of Physics Research, 20(1), pp.147-155. [45] Zare, M.H., 2020. Competition between spin-singlet and-triplet superconducting states in the doped extended Kitaev-Heisenberg model. Iranian Journal of Physics Research, 20(1), pp.147-155