Doped t-J model of twisted bilayer WSe2

Document Type : Original Article

Authors

1 Department of Physics, Qom University of Technology, Qom, Iran

2 Department of Physics, Faculty of Science, Shahrekord University, Shahrekord, Iran

Abstract

Experiments in twisted materials have shown evidence of exotic phases, such as correlated insulating phases and unconventional superconductivity states. Recently, the topological moiré valance bands with opposite Chern numbers in twisted bilayer WSe  have been described with a generalized Kane-Mele model on a honeycomb lattice. Interaction strength, band filling, and bandwidth of twisted materials are well controlled employing varying the twist angle and using three-dimensional dielectric environments. To describe the existence of these exotic phases in the twisted bilayer WSe , we consider the doped moiré Hubbard model in the strongly correlated limit. Here, we are interested in studying the stability of different superconductivity channels by employing the mean-filed theory. We find that the admixture of the nearest-neighbor- - and next-nearest-neighbor- -wave pairings is the superconducting ground state at any doping level. In addition, the obtained results show that the quasi-spin-orbit interaction plays an essential role in the stability of this mixed singlet-triplet superconductivity.

Keywords

Main Subjects


© 2023 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Hunt, B., Sanchez-Yamagishi, J.D., Young, A.F., Yankowitz, M., LeRoy, B.J., Watanabe, K., Taniguchi, T., Moon, P., Koshino, M., Jarillo-Herrero, P. and Ashoori, R.C., 2013. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science, 340(6139), pp.1427-1430.
[2] Dean, C.R., Wang, L., Maher, P., Forsythe, C., Ghahari, F., Gao, Y., Katoch, J., Ishigami, M., Moon, P., Koshino, M. and Taniguchi, T., 2013. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 497(7451), pp.598-602.
[3] Wang, L., Gao, Y., Wen, B., Han, Z., Taniguchi, T., Watanabe, K., Koshino, M., Hone, J. and Dean, C.R., 2015. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science, 350(6265), pp.1231-1234.
[4] Spanton, E.M., Zibrov, A.A., Zhou, H., Taniguchi, T., Watanabe, K., Zaletel, M.P. and Young, A.F., 2018. Observation of fractional Chern insulators in a van der Waals heterostructure. Science, 360(6384), pp.62-66.
[5] Cao, Y., Fatemi, V., Demir, A., Fang, S., Tomarken, S.L., Luo, J.Y., Sanchez-Yamagishi, J.D., Watanabe, K., Taniguchi, T., Kaxiras, E. and Ashoori, R.C., 2018. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556(7699), pp.80-84.
[6] Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E. and Jarillo-Herrero, P., 2018. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556(7699), pp.43-50.
[7] Dos Santos, J.L., Peres, N.M.R. and Neto, A.C., 2007. Graphene bilayer with a twist: Electronic structure. Physical review letters, 99(25), p.256802.
[8] Li, G., Luican, A., Lopes dos Santos, J.M.B., Castro Neto, A.H., Reina, A., Kong, J. and Andrei, E.Y., 2010. Observation of Van Hove singularities in twisted graphene layers. Nature physics, 6(2), pp.109-113.
[9] Bistritzer, R. and MacDonald, A.H., 2011. Moiré bands in twisted double-layer graphene. Proceedings of the National Academy of Sciences, 108(30), pp.12233-12237.
[10] Mele, E.J., 2010. Commensuration and interlayer coherence in twisted bilayer graphene. Physical Review B, 81(16), p.161405.
[11] Luican, A., Li, G., Reina, A., Kong, J., Nair, R.R., Novoselov, K.S., Geim, A.K. and Andrei, E.Y., 2011. Single-layer behavior and its breakdown in twisted graphene layers. Physical review letters, 106(12), p.126802. [12] Dos Santos, J.L., Peres, N.M.R. and Neto, A.C., 2012. Continuum model of the twisted graphene bilayer. Physical review B, 86(15), p.155449.
[13] Moon, P. and Koshino, M., 2012. Energy spectrum and quantum Hall effect in twisted bilayer graphene. Physical Review B, 85(19), p.195458.
[14] Jung, J., Raoux, A., Qiao, Z. and MacDonald, A.H., 2014. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Physical Review B, 89(20), p.205414. [15] Wong, D., Wang, Y., Jung, J., Pezzini, S., DaSilva, A.M., Tsai, H.Z., Jung, H.S., Khajeh, R., Kim, Y., Lee, J. and Kahn, S., 2015. Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Physical Review B, 92(15), p.155409.
[16] Fang, S. and Kaxiras, E., 2016. Electronic structure theory of weakly interacting bilayers. Physical Review B, 93(23), p.235153.
[17] Kim, K., DaSilva, A., Huang, S., Fallahazad, B., Larentis, S., Taniguchi, T., Watanabe, K., LeRoy, B.J., MacDonald, A.H. and Tutuc, E., 2017. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proceedings of the National Academy of Sciences, 114(13), pp.3364-3369.
[18] Nam, N.N. and Koshino, M., 2017. Lattice relaxation and energy band modulation in twisted bilayer graphene. Physical Review B, 96(7), p.075311.
[19] Efimkin, D.K. and MacDonald, A.H., 2018. Helical network model for twisted bilayer graphene. Physical Review B, 98(3), p.035404.
[20] Guinea, F. and Walet, N.R., 2018. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proceedings of the National Academy of Sciences, 115(52), pp.13174-13179. [21] Zou, L., Po, H.C., Vishwanath, A. and Senthil, T., 2018. Band structure of twisted bilayer graphene: Emergent symmetries, commensurate approximants, and Wannier obstructions. Physical Review B, 98(8), p.085435. [22] Xu, C. and Balents, L., 2018. Topological superconductivity in twisted multilayer graphene. Physical review letters, 121(8), p.087001.
[23] Roy, B. and Juričić, V., 2019. Unconventional superconductivity in nearly flat bands in twisted bilayer graphene. Physical Review B, 99(12), p.121407.
[24] You, Y.Z. and Vishwanath, A., 2019. Superconductivity from valley fluctuations and approximate SO (4) symmetry in a weak coupling theory of twisted bilayer graphene. npj Quantum Materials, 4(1), p.16.
[25] Huang, T., Zhang, L. and Ma, T., 2019. Antiferromagnetically ordered mott insulator and d+ id superconductivity in twisted bilayer graphene: A quantum monte carlo study. Science Bulletin, 64(5), pp.310-314. [26] Isobe, H., Yuan, N.F. and Fu, L., 2018. Unconventional superconductivity and density waves in twisted bilayer graphene. Physical Review X, 8(4), p.041041.
[27] Wu, F., MacDonald, A.H. and Martin, I., 2018. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Physical review letters, 121(25), p.257001.
[28] Dodaro, J.F., Kivelson, S.A., Schattner, Y., Sun, X.Q. and Wang, C., 2018. Phases of a phenomenological model of twisted bilayer graphene. Physical Review B, 98(7), p.075154.
[29] Po, H.C., Zou, L., Vishwanath, A. and Senthil, T., 2018. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Physical Review X, 8(3), p.031089.
[30] Padhi, B., Setty, C. and Phillips, P.W., 2018. Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization, not Mott insulation. Nano letters, 18(10), pp.6175-6180.
[31] Yuan, N.F. and Fu, L., 2018. Model for the metal-insulator transition in graphene superlattices and beyond. Physical Review B, 98(4), p.045103.
[32] Chen, G., Jiang, L., Wu, S., Lv, B., Li, H., Watanabe, K., Taniguchi, T., Shi, Z., Zhang, Y. and Wang, F., 2019. Gate-Tunable Mott Insulator in Trilayer Graphene-Boron Nitride Moiré Superlattice. In APS March Meeting Abstracts (Vol. 2019, pp. S14-008).
[33] Naik, M.H. and Jain, M., 2018. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Physical review letters, 121(26), p.266401.
[34] Wu, F., Lovorn, T., Tutuc, E., Martin, I. and MacDonald, A.H., 2019. Topological insulators in twisted transition metal dichalcogenide homobilayers. Physical review letters, 122(8), p.086402.
[35] Zhang, Z., Wang, Y., Watanabe, K., Taniguchi, T., Ueno, K., Tutuc, E. and LeRoy, B.J., 2020. Flat bands in twisted bilayer transition metal dichalcogenides. Nature Physics, 16(11), pp.1093-1096.
[36] Wang, L., Shih, E.M., Ghiotto, A., Xian, L., Rhodes, D.A., Tan, C., Claassen, M., Kennes, D.M., Bai, Y., Kim, B. and Watanabe, K., 2020. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature materials, 19(8), pp.861-866.
[37] Muruganandam, V., Sajjan, M. and Kais, S., 2023. Foray into the topology of poly-bi-[8]-annulenylene. arXiv preprint arXiv:2305.06264. [38] Zare, M.H. and Mosadeq, H., 2021. Spin liquid in twisted homobilayers of group-VI dichalcogenides. Physical Review B, 104(11), p.115154.
[39] Zare, M.H., Fazileh, F. and Shahbazi, F., 2013. Zero-temperature phase diagram of the classical Kane-Mele-Heisenberg model. Physical Review B, 87(22), p.224416.
[40] Baskaran, G., Zou, Z. and Anderson, P.W., 1993. The resonating valence bond state and high-Tc superconductivity—a mean field theory. Solid state communications, 88(11-12), pp.853-856.
[41] Lee, P.A., Nagaosa, N. and Wen, X.G., 2006. Doping a Mott insulator: Physics of high-temperature superconductivity. Reviews of modern physics, 78(1), p.17.
[42] Sigrist, M. and Ueda, K., 1991. Phenomenological theory of unconventional superconductivity. Reviews of Modern physics, 63(2), p.239.
[43] Black-Schaffer, A.M. and Doniach, S., 2007. Resonating valence bonds and mean-field d-wave superconductivity in graphite. Physical Review B, 75(13), p.134512. [44] Zare, M.H., 2020. Competition between spin-singlet and-triplet superconducting states in the doped extended Kitaev-Heisenberg model. Iranian Journal of Physics Research, 20(1), pp.147-155. [45] Zare, M.H., 2020. Competition between spin-singlet and-triplet superconducting states in the doped extended Kitaev-Heisenberg model. Iranian Journal of Physics Research, 20(1), pp.147-155