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Experiments in twisted materials have shown evidence of exotic phases, such as correlated insulating 

phases and unconventional superconductivity states. Recently, the topological moiré valance bands 

with opposite Chern numbers in twisted bilayer WSe2 have been described with a generalized Kane-

Mele model on a honeycomb lattice. Interaction strength, band filling, and bandwidth of twisted 

materials are well controlled employing varying the twist angle and using three-dimensional 

dielectric environments. To describe the existence of these exotic phases in the twisted bilayer WSe2, 

we consider the doped moiré Hubbard model in the strongly correlated limit. Here, we are interested 

in studying the stability of different superconductivity channels by employing the mean-filed theory. 

We find that the admixture of the nearest-neighbor-𝑑 + 𝑖𝑑- and next-nearest-neighbor-𝑒𝑠 + 𝑓-wave 

pairings is the superconducting ground state at any doping level. In addition, the obtained results 

show that the quasi-spin-orbit interaction plays an essential role in the stability of this mixed singlet-

triplet superconductivity. 
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1. Introduction 

      Twisted bilayer systems consisting of 
semiconductors or semimetals with different lattice 
constants or orientations of the individual layers form in 
van der Waals bilayers [1-4]. Recent experimental 
observations have proven the existence of the electron 
current without resistance in twisted bilayer graphene with 
voltage gating in the magic angles of about 1 - 1.5° [5,6]. Due 
to its central importance for fundamental physics, the 
electronic structure of the sandwich of two-layer graphene 
has attracted much interest [7-21]. Theoretical studies have 
shown the existence of the nearly flat bands that are 
separated from other bands with a large gap [9]. As a result, 
the interaction effects can increase when the chemical 
potential lies in these nearly flat bands via the carrier 
density. The Mott insulator behavior for the twisted-bilayer 
graphene was experimentally shown for filling 1/4 or 3/4 at 
low temperatures [5]. Inducing the carrier charges via the 
voltage gate gives rise to a superconductivity phase in the 
twisted-bilayer graphene at low temperatures [6]. It should 
be noted that the inducing superconductivity phase is 

predicted to be unconventional [22-27]. At present, these 
new findings can help the understanding of unconventional 
superconductivity at room temperature and the study of 
strongly correlated systems [28-32]. 

Apart from the twisted bilayer graphene, 
theoretical [33,34] and experimental [35,36] studies have 
verified the existence of the flat bands in the twisted bilayer 
transition metal dichalcogenides (TMD), which are 
composed of two similar semiconductors. In contrast to the 
twisted bilayer graphene, in which the flat bands are formed 
only within a narrow range (±0.1°) around the magic angle 
1.1°, in TMDs the flat bands appear in larger windows of 
twist angles in the twisted TMD homobilayer. More recently, 
experimental observations have reported the discovery of 
strongly correlated insulating phases and 
superconductivity for this class of materials [35,36]. Mott 
insulating behavior originates from the flat bands because 
the Coulomb potential dominates the kinetic energy of the 
band electrons. 

In this paper, we are interested in investigating the 
superconducting gap symmetry that is the fundamental 
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property of the superconducting state in this material by 
applying a mean-field approach. For this purpose, we study 
the competition of spin-singlet superconductivity and spin-
triplet superconductivity in the hole-doped moiré Hubbard 
model on a honeycomb lattice in the strongly correlated 
limit. The importance of studying the twisted TMD bilayers 
is due to the fact that the strength of the spin-orbit 
interaction in these systems can be controlled by the 
interlayer potential difference [37]. By changing the 
interlayer potential difference, we can manipulate the band 
structure of the twisted TMD homobilayer so that Van Hove 
singularities appear in the density of states, which results in 
easy control of the spin-orbit coupling. 

2. Model Hamiltonian  

Recently, the effective two-orbital model on a 
honeycomb lattice is proposed for the twisted WSe2/WSe2 
homobilayers with small twist angles near 0° as 
follows [34]: 

 

𝐻𝑘 = 𝑡1 ∑ 𝑐𝑖,𝛼
†

⟨𝑖𝑗⟩,𝛼

𝑐𝑗,𝛼 + 𝑡2 ∑ 𝑒
2𝜋𝑖

3
𝜈𝑖𝑗

⟨⟨𝑖𝑗⟩⟩,𝛼

𝑐𝑖,𝛼
† 𝑐𝑗,𝛼 (1) 

 

where 𝑐𝑖𝛼
†  (𝑐𝑖𝛼) stands for the creation (annihilation) 

operator of an electron with spin-up and spin-down 𝛼 = ± 
on site 𝑖. The first term represents the nearest-neighbor 
(NN) hopping with amplitude 𝑡1, and the second term 
denotes the bond and spin-dependent hopping between 
the next-nearest-neighbor (NNN) on a honeycomb lattice 

which νij = (𝑑1̂ × 𝑑2̂)𝑧 . Note that the unit vectors 𝑑1̂ and 𝑑2̂ 
are the vectors connecting the next-nearest neighbors. In 
this paper, we set 𝑡1 = 0.29 meV and 𝑡2 = 0.06 meV [34]. In 
Figure 1, we indicate the two valence bands have been 
obtained from the effective in Eq. (1). Since the kinetic 
energy is strongly decreased under the suppressed 
bandwidth condition in the moiré bands, thus many-body 
effects for electrons in the flat bands are remarkably 
increased. The ration of interaction strength to bandwidth 
of moiré homobilayers is well modified through varying the 
twist angle and using a three-dimensional environment. 
Figures 2(c)-(d) show the evolution of the Fermi surface 
with respect to chemical potential 𝜇 = − 0.2, − 0.4, 
respectively. For the hole-doped for 𝜇 = − 0.2, the Fermi 
surface has electron-like pocket centered around the 𝐾 
points of the Brillouin zone (BZ). At 𝜇 = − 0.23, the 
contours of the Fermi surface touch the borders of the BZ 
at the 𝑀 points. This filling marks a Lifshitz transition, 
which results in a van Hove singularity in the density of 
state and a changing of the topology of the Fermi surface. 
At 𝜇 = − 0.23, the topology of the Fermi surface has been 
changed into hole-like textures, with pockets, which are 
centered around the Γ points. 

Adding electron-electron interaction to the above 
Hamiltonian, Eq. (1), by an on-site repulsive Hubbard term: 
 

𝐻𝑈 = 𝑈 ∑ 𝑛𝑖↑

𝑖

𝑛𝑖↓ (2) 

gives quasi Kane-Mele-Hubbard model. Here, 𝑛𝑖𝛼 = 𝑐𝑖𝛼
† 𝑐𝑖𝛼 

is a number operator, and 𝑈 is on-site Coulomb interaction. 
When the on-site Coulomb repulsion U is much larger than 

the hopping integrals 𝑡1 and 𝑡2, the charge fluctuations are 
squeezed, and one can project the half-filled Hamiltonian to 
the lowest Hubbard subband for which the condition of the 
single-occupied site is fulfilled. This procedure can be done 
perturbatively in terms of the ratios 𝑡1/𝑈 and 𝑡2/𝑈. Two-
second order, we find an effective spin Hamiltonian 
[38] similar to the Kane-Mele Heisenberg model [39] as 
follows: 

𝐻𝐽 = ∑ 𝐽1

⟨𝑖𝑗⟩

𝑺𝑖 ⋅ 𝑺𝑗 + ∑

⟨⟨𝑖𝑗⟩⟩

[𝐽2𝑺𝑖 ⋅ 𝑺𝑗  

                                      − 𝑔2(𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝑆𝑖
𝑦

𝑆𝑗
𝑦

− 𝑆𝑖
𝑧𝑆𝑗

𝑧) 

                              −𝜈𝑖𝑗𝑫 ⋅ (𝑺𝑖 × 𝑺𝑗)] 

(3) 

 
This effective spin Hamiltonian consists of 

antiferromagnetic Heisenberg exchange interactions 
between nearest-neighbor and next-nearest-neighbor with 
𝐽1 = 4𝑡1

2/𝑈, 𝐽2 = 𝑡2
2/𝑈, and 𝑔2 = 3𝐽2, respectively. In 

addition, from the spin- and bond-dependent hopping 
integral term between NN neighbors, we obtain the 𝑋𝑌 
term that favors in-plane ferromagnetic order; the Ising 
term which favors antiparallel of spins out-of-plane and the 
antisymmetric Dzyaloshinskii-Moriya (DM) exchange with 
𝐷 = 2√3𝐽2𝑧̂. The DM interaction is an asymmetric 
exchange interaction coupling that favors a noncollinear 
orientation of spins. As a result, the noncollinear 
orientation of spins leads to the stability of triplet-pairing 
correlation. 

 
Fig.1.  (a) Moiré band structure of twisted TMD homobilayer obtained 
by suing the effective tight-binding model in Eq. (1), where the hopping 
integral parameters were set as 𝑡1 = 0.29 meV and 𝑡2 = 0.06 meV [34]. 
(b) The first BZ and the high-symmetry points of the honeycomb 
lattice. Fermi surface of twisted TMD homobilayer for (c)𝜇 = −0.2 and 
(d)𝜇 = −0.4. 

 

3. Method and Results  

      To investigate the potential superconducting pairing 
symmetry in the hole-doped homobilayer moiré systems, 
we start from the t − J model as HKJ = HK + HJ. For this 
purpose, it is necessary to replace the spin operators in HJ 
with fermions. For this end, we utilize the auxiliary 

fermions as 
†

, , ,

1

2
i i jf f   =S σ  in which fi,α

† (fi,α) is the 

fermionic spinon creation (annihilation) operator on site i. 
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Since the effective Hamiltonian Eq. (3) includes the 
exchange interactions between nearest-neighbor and next-
nearest-neighbor on the honeycomb lattice, therefore we 
define the related spin-singlet- and spin-triplet as follows: 

𝑠𝑖𝑗 =
𝑖

√2
∑(𝜎𝑦𝜎0)𝛼,𝛽𝑓𝑖,𝛼𝑓𝑗,𝛽

𝛼,𝛽

, 

𝑡𝑖𝑗
𝜌

=
𝑖

√2
∑(𝜎𝜌𝜎𝑦)𝛼,𝛽𝑓𝑖,𝛼𝑓𝑗,𝛽

𝛼,𝛽

 
(4) 

in which 𝑖 and 𝑗 standing for nearest-neighbors and next-
nearest neighbors on the honeycomb lattice. The index 𝜌 =
𝑥, 𝑦, 𝑧 identifies three triplet components and 𝜎 =
(𝜎𝑥, 𝜎𝑦 , 𝜎𝑧) are the Pauli matrices in the spin space, and 𝜎0 

is the 2 × 2 identity matrix. The effective Hamiltonian can 
easily be re-expressed in terms of the spin-singlet and spin-
triplet pairing as follows: 
 

𝐻𝐽 = − ∑ 𝐽1

⟨𝑖𝑗⟩

 𝑠𝑖𝑗
† 𝑠𝑖𝑗 − ∑ [

⟨⟨𝑖𝑗⟩⟩

𝐽2 𝑠𝑖𝑗
† 𝑠𝑖𝑗 + 𝑔2 𝑡𝑖𝑗

𝑧†𝑡𝑖𝑗
𝑧  

                             +
𝑖

2
𝜈𝑖𝑗𝐷(𝑠𝑖𝑗

† 𝑡𝑖𝑗
𝑧 − 𝑡𝑖𝑗

𝑧†𝑠𝑖𝑗)] + 𝐻. 𝑐. , 

 

(5) 

where the constant terms have been dropped because 
they only shift the overall energy. The interaction 
Hamiltonian, Eq. (5), in the mean-field approximation 
rewritten in terms of the nearest-neighbor spin-singlet MF 
order parameter, the next nearest-neighbor spin-singlet 
and spin-triplet MF order parameters as follows: 

 

 𝜓𝛿̂𝑖
=< 𝑠𝑖𝑗 >/√2, (6) 

𝜓𝛿̂𝑖
′ =< 𝑠𝑖𝑗 >/√2, 

𝜓
𝛿̂𝑖

′
′𝜌

=< 𝑡𝑖𝑗,𝛿′
𝜌

>/√2 

 

      which the indices 𝛿̂𝑖 and 𝛿̂𝑖
′ indicate the direction of the 

nearest-neighbor and next-nearest-neighbor of 𝑖th on 
honeycomb lattice site. Using these definitions, we now 
obtain the mean-field Hamiltonian reads as: 

𝐻𝑀𝐹 = 𝐻𝑘 − ∑ 𝐽1

⟨𝑖𝑗⟩

 𝜓𝑖𝑗𝑠𝑖𝑗
† − ∑ [

⟨⟨𝑖𝑗⟩⟩

(𝐽2 𝜓𝑖𝑗
′ +

𝑖

2
𝐷𝜈𝑖𝑗𝑑′

𝑖𝑗
𝑧

)𝑠𝑖𝑗
†

+ (𝑔2 𝑑′
𝑖𝑗
𝑧

−
𝑖

2
𝐷𝜈𝑖𝑗𝜓𝑖𝑗

′ )𝑡𝑖𝑗
𝑧†]

− 𝜇 ∑ 𝑓𝑖,𝛼
†

𝑖,𝛼

𝑓𝑖,𝛼 + 𝐻. 𝑐. 

(7) 

 
To ensure the Gutzwiller projection .e.g. to abandon from 
double counting of interparticle interaction, we utilize the 
so-called 𝑈(1) slave boson theory in which the bare 
hopping integrals 𝑡1 and 𝑡2 in the kinetic term, 𝐻𝐾 , rescaled 
with 𝛿 [40,41]. The order parameters in Eq. (7) are 
obtained via the self-consistent equations as: 

𝜓 = −
𝐽1

√2
(⟨𝑠𝑖𝛿1

⟩, ⟨𝑠𝑖𝛿2
⟩, ⟨𝑠𝑖𝛿3

⟩) (8) 

𝜓′ = −
1

√2
(𝐽2⟨𝑠𝑖𝛿1

′ ⟩ +
𝑖

2
𝐷𝜈𝑖𝛿1

′ ⟨𝑡
𝑖𝛿1

′
𝑧 ⟩,   

𝐽2⟨𝑠𝑖𝛿2
′ ⟩ +

𝑖

2
𝐷𝜈𝑖𝛿2

′ ⟨𝑡𝑖𝛿2
′

𝑧 ⟩, 

 𝐽2⟨𝑠𝑖𝛿3
′ ⟩ +

𝑖

2
𝐷𝜈𝑖𝛿3

′ ⟨𝑡𝑖𝛿3
′

𝑧 ⟩) 

𝑑′𝑧 = −
1

√2
(𝑔2⟨𝑡𝑖𝛿1

′
𝑧 ⟩ −

𝑖

2
𝐷𝜈𝑖𝛿1

′ ⟨𝑠𝑖𝛿1
′ ⟩, 

 𝑔2⟨𝑡
𝑖𝛿2

′
𝑧 ⟩ −

𝑖

2
𝐷𝜈𝑖𝛿2

′ ⟨𝑠𝑖𝛿2
′ ⟩,  𝑔2⟨𝑡

𝑖𝛿3
′

𝑧 ⟩ 

−
𝑖

2
𝐷𝜈𝑖𝛿3

′ ⟨𝑠𝑖𝛿3
′ ⟩). 

As is clear, the Heisenberg exchange interactions J1 and J2 
lead to the producing of the singlet pairing on the nearest 
and next-nearest-neighbors, respectively. The Kane-Mele 
term generates the equal spin triplet-paring with mz = 0, 
and the DM term mixes the singlet and triplet channels on 
the next-nearest neighbors of the honeycomb lattice, 
respectively. We now go the momentum space using 
transformations 

𝑓𝑖,𝑙,𝛼 =
1

√𝑁
∑ 𝑒𝑖𝒒⋅𝑹

𝒒

𝑓𝒒,𝑙,𝛼 (9) 

here R goes through the different unit cells, s denotes the 
sublattice index. By also including the chemical potential, 
we obtain a Bogoliubov-de Gennes (BdG) Hamiltonian on 
honeycomb lattice with two sublattices (𝑙 = 1,2) in two-
dimensional (2D) which can be written as

†1

2
H M=   q k q

q  

with 

† †

, , , , , , , ,
( , , , )

l l l l
f f f f

  −  − 
 =q q q q q   

and the 8 × 8 matrix: 
 

𝑀𝒌 = (
𝜉(𝒒) 𝛥(𝒒)

𝛥†(𝒒) −𝜉∗(−𝒒)
)  

 
Where 

 
𝜉(𝒒) = 𝑡1(𝒒) ⊗ 𝜎0 + (𝑡2(𝒒) − 𝜇)𝜎0 − 𝑡2

′ (𝒒)𝜎𝑧 ⊗ 𝜎𝑧 , 
(10) 

with 

1 *

0 ( )
( ) ,

( ) 0
t





 
=  
 

q
q

q
 

i i
i ( ) ( )

2 23 3 3
1( ) ( ),

x x x
y y

q q q
q q

t e e e
− − +

= + +q
 

𝑡2(𝒒) = −𝑡2(𝑐𝑜𝑠( 𝑞𝑦) + 𝑐𝑜𝑠(
√3

2
𝑞𝑥 −

1

2
𝑞𝑦) 

+ 𝑐𝑜𝑠(
√3

2
𝑞𝑥 +

1

2
𝑞𝑦)) 

𝑡2
′ (𝒒) = √3𝑡2(𝑠𝑖𝑛( 𝑞𝑦) + 𝑠𝑖𝑛(

√3

2
𝑞𝑥 −

1

2
𝑞𝑦) 

− 𝑠𝑖𝑛(
√3

2
𝑞𝑥 +

1

2
𝑞𝑦)),                                                           (11) 

and the superconducting gap function is given by: 
 

𝛥(𝒒) = 𝜎𝑥 ⊗ 𝛥1(𝒒) + 𝑖𝜎𝑦 ⊗ 𝛥2(𝒒),                                 (12) 

1 2

1

1 2

( ) ( ) 0
( ) ,

0 ( ) ( )

d d

d d

+ 
 =  

− + 

q q
q

q q
 

𝛥2(𝒒) = (
𝑑3(𝒒) + 𝑑4(𝒒) 𝑑5(𝒒)

𝑑5(−𝒒) 𝑑3(𝒒) − 𝑑4(𝒒)
) 

In which  
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 𝑑1(𝒒) = 𝐷(−𝜓𝛿1
′

′ 𝑠𝑖𝑛( − 𝑞𝑦) + 𝜓𝛿2
′

′ 𝑠𝑖𝑛(
√3

2
𝑞𝑥 −

1

2
𝑞𝑦) − 𝜓

𝛿3
′

′ 𝑠𝑖𝑛(
√3

2
𝑞𝑥 +

1

2
𝑞𝑦)), 

1

2 3

2 2( ) 2 sin( )

3 1 3 1
sin( ) sin( ) ,

2 2 2 2

(

)

z

y

z z

x y x y

d ig d q

d q q d q q



 



 

= −

+ − + +

q

𝑑3(𝒒) = 2𝐽2(𝜓𝛿1
′

′ 𝑐𝑜𝑠( − 𝑞𝑦) 

+𝜓
𝛿2

′
′ 𝑐𝑜𝑠(

√3

2
𝑞𝑥 −

1

2
𝑞𝑦) + 𝜓

𝛿3
′

′ 𝑐𝑜𝑠(
√3

2
𝑞𝑥 +

1

2
𝑞𝑦)), 

1

2 3

4 ( ) cos( )

3 1 3 1
cos( ) cos( ) ,

2 2 2 2

(

)

z

y

z z

x y x y

d iD d q

d q q d q q



 



 

= − −

+ − − +

q

𝑑5(𝒒) = 𝐽1(𝜓𝛿1
𝑒

−𝑖
𝑞𝑥

√3 + 𝜓𝛿2
𝑒

𝑖(
𝑞𝑥

2√3
−

𝑞𝑦

2
)
 

+𝜓𝛿3
𝑒

𝑖(
𝑞𝑥

2√3
+

𝑞𝑦

2
)
),                                                                         (13) 

To diagonalize the kinetic Hamiltonian (10), we obtain 
eigenvalues as: 

𝜉1,2(𝒒) = 𝑡2(𝒒) − 𝜇 ± √𝑡2
′ 2

(𝒒) + |𝑔(𝒒)|2,                         (14) 

 
Let the expectation value for the number of electrons 

per lattice site be 1 − 𝛿. Then 

𝛿 =
1

2𝑁
∑[𝑡𝑎𝑛ℎ( 𝛽𝑐𝜉1/2)

𝑞

+ 𝑡𝑎𝑛ℎ( 𝛽𝑐𝜉2/2)],                                   (15) 
The dependence of the doping on the chemical potential 

is shown in Figure 2 at two different temperatures. Here, 
𝛿quantifies the hole doping so that 1 − 𝛿 is the average 
number of electrons per site. 

 
Fig.2. The dependence of the doping level 𝛿 on the chemical potential. 

 

 
Fig.3. Possible solutions of the linear gap equations in Eq. (17) for the 

singlet case with 𝐽2 = 𝐷 = 0 . 

 
Close to the critical temperature of the superconducting 

phase transition, the order parameters are suppressed and 
we can obtain linearized gap equations [42]. In the absence 
of the NN neighbor hopping (𝑡2 = 0), we can write the gap 
equations as 

𝛥 = 𝑀⃗⃗⃗(𝛽𝑐)𝛥,                                                                         (16)   

where 𝛥 = (𝛥𝑥, 𝛥𝑦 , 𝛥𝑧)†and 

𝑀⃗⃗⃗ = 𝐽1 (
𝐷 𝐵 𝐵
𝐵 𝐷 𝐵
𝐵 𝐵 𝐷

) 

the elements of matrices 𝐷 and 𝐵 are given by 

𝐷(𝛽𝑐 , 𝜇) =
1

2𝑁
∑{[

𝑡𝑎𝑛ℎ( 𝛽𝑐𝜉1/2)

2𝜉1

+
𝑡𝑎𝑛ℎ( 𝛽𝑐𝜉2/2)

2𝜉2

]

𝑞

 

𝑐𝑜𝑠( 𝑞. 𝛿𝑖) 𝑐𝑜𝑠( 𝑞. 𝛿𝑖 − 𝜑𝛿) 

+
𝑠𝑖𝑛ℎ( 𝛽𝑐𝜇)

2 𝑐𝑜𝑠ℎ( 𝛽𝑐𝜉1/2) 𝑐𝑜𝑠ℎ( 𝛽𝑐𝜉2/2)
 

𝑠𝑖𝑛( 𝑞. 𝛿𝑖) 𝑠𝑖𝑛( 𝑞. 𝛿𝑖 − 𝜑𝛿)} 
for all 𝑖 = 𝑥, 𝑦, 𝑧. Similarly 

𝐵(𝛽𝑐 , 𝜇) =
1

2𝑁
∑{[

𝑡𝑎𝑛ℎ( 𝛽𝑐𝜉1/2)

2𝜉1

+
𝑡𝑎𝑛ℎ( 𝛽𝑐𝜉2/2)

2𝜉2

]

𝑞

 

𝑐𝑜𝑠( 𝑞. 𝛿𝑖) 𝑐𝑜𝑠( 𝑞. 𝛿𝑖 − 𝜑𝛿) 

+
𝑠𝑖𝑛ℎ( 𝛽𝑐𝜇)

2 𝑐𝑜𝑠ℎ( 𝛽𝑐𝜉1/2) 𝑐𝑜𝑠ℎ( 𝛽𝑐𝜉2/2)
 

𝑠𝑖𝑛( 𝑞. 𝛿𝑖) 𝑠𝑖𝑛( 𝑞. 𝛿𝑖 − 𝜑𝛿)} 
for all 𝑖 ≠ 𝑗. Here, 𝑒𝑖𝜑(𝑞) = 𝛾(𝑞⃗)/|𝛾(𝑞⃗)|. 
For all the parameters 𝜇 and 𝑡 fixed, we can find the 

critical temperature and the symmetry of the order 
parameter by looking for smallest value of 𝛽𝑐  for which  

 
𝑑𝑒𝑡( 𝑀 − 𝐼) = 0                                                                        (17) 

 
As shown in Figure 3, our calculations are consistent 

with the reported results in Ref. [43]. In this case, our 
theoretical results indicate the stability of chiral 
superconductivity is characterized by the breaking of both 
time-reversal and parity symmetries at any doping level. 
The chiral 𝑑-wave superconducting in the 𝐽1 Heisenberg 
model on the honeycomb lattice is a spin-singlet 𝑑𝑥2−𝑦2 ±

𝑖𝑑𝑥𝑦-wave state. Here, the two 𝑑-wave states are twofold 

degenerate due to the sixfold symmetry of the honeycomb 
lattice. However, these 𝑑-wave states have a relative 𝜋/2 
phase shift to result in a fully gapped bulk superconducting 
state. 

Following a similar method, we obtain linearized gap 
equations also for the next nearest-neighbor MF order 

parameters, 𝜓′𝛿̂′ and 𝑑′
𝛿̂′

𝜌
. We find that the 𝑑′𝛿̂′

𝑧  are coupled 

with 𝜓′𝛿̂′ and therefore we can write these linearized gap 
equations using a stability matrix. To find the critical 
temperature and the symmetry of the order parameters, 
we should obtain the eigenvalues of the stability matrices 
for different channels. Noted that the critical temperature 
is determined by the largest temperature that at least one 
of the eigenvalues of different channels be unity [43,44]. In 
addition, we can obtain the symmetry of the 
superconducting gap by inserting the eigenvector 
corresponding to this eigenvalue with the largest 
temperature in Eq. (13).  
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We find numerically that the chiral NN-𝑑𝑥2+𝑦2 + 𝑖𝑑𝑥𝑦-

wave pairing is the dominant instability at any doping level. 
We find no superconducting instability towards the 
extended-𝑠-wave (𝑒𝑠-wave) on the NN pairing of the inter-
sublattice component. On the other hand, the NNN-𝑒𝑠 + 𝑓-
wave exhibits a dominant instability among all the 
superconducting channels on the NNN pairing of the intra-
sublattice component. Figures 4 (a-b) indicate the spatial 
point symmetry of the 𝑒𝑠-wave and 𝑓-wave order 
parameters. Indeed, we find, within the mean-field theory, 
this admixture state of a 𝑒𝑠-wave state and a 𝑓-wave state 
has a lower energy than other solutions. This mixing is 
originated from the fact that the spin-triplet component 
should be aligned to the direction of the quasi Kane-Mele 
coupling in Eq. (1) [45]. It should be noted that admixture 
state of the NN-𝑑 + 𝑖𝑑- and NNN-𝑒𝑠 + 𝑓-wave pairing on 
the honeycomb lattice is not invariant under the time-
reversal symmetry. 

 
 Fig. 4. Spatial point symmetry of (a) 𝑒𝑠, and (b) 𝑓 order parameters 
within FBZ. 

 

4. Conclusion 

In summary, we employed a mean-field approach to 

investigate the possible superconductivities in the twisted 

WSe2/WSe2 homobilayer on the doped moiré Hubbard 

model. We clearly demonstrated that the admixture of the 

NN-𝑑 + 𝑖𝑑- and NNN-𝑒𝑠 + 𝑓-wave pairing was the 

superconducting ground state at any doping level. Owing to 

the special lattice structure of the twisted WSe2/WSe2 

homobilayer, the honeycomb lattice includes the 

admixture of nearest-neighbor and next-nearest-neighbor 

pairing components. As abovementioned, the magnitude of 

the spin-orbit interaction can be well controlled by 

applying the potential difference between the two layers in 

the twisted WSe2, which supports the stability of the spin-

triplet superconducting state for different doping levels. 
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