The effect of pulsed electron beam irradiation on surface characteristics of AM60 magnesium alloy

Document Type : Original Article


1 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

2 Russian Academy of Sciences, Institute of Strength Physics and Materials Science of the Siberian Branch, Tomsk, Russia

3 Institute of High Current Electronics of the Siberian Branch of Russian Academy of Sciences


In this study, AM60 magnesium alloy surface modification was performed by electron beam irradiation at different energy densities of 3, 5, and 8 J/cm2 and a pulse duration of 2-4 μs for RITM installation and 100 μs for SOLO installation. Then the surface characteristics were analyzed and the process parameters were optimized based on microscopic images with scanning electron microscopy. The element magnesium, the intermetallic phase of Al-Mn and Mg-Al (Mg17Al12) were observed on the microstructure of all samples. It is significant that due to oxidation, the MgO phase was observed in AM60 alloy which was removed by pulsed electron beam irradiation (PEBI). This technique generally caused the percentage of the AlMn phase to be lower than the raw sample and even at the energy level of 8 j/cm2, the AlMn phase was ignored. However, the percentage of Mg17Al12 phase increased significantly after PEBI and this phase changed from block to point mode and spread throughout the material. It was found that with PEBI the surface characteristic changes and among the three levels of 33, 5, and 8 J/cm2, 5 J/cm2 has the lowest number of cracks and the shortest crack length.


Main Subjects

[1] I.J. Polmear, Magnesium alloys and applications, 
Mater. Sci. Technol. 10 (1994) 1–16.
[2] S. Shrestha, Magnesium and surface engineering, 
Surf. Eng. 26 (2010) 313–316.
[3] M. Azadi, G.H. Farrahi, G. Winter, W. Eichlseder, 
Fatigue lifetime of AZ91 magnesium alloy subjected 
to cyclic thermal and mechanical loadings, Mater. 
Des. 53 (2014) 639–644.
[4] M. Mokhtarishirazabad, M. Azadi, G.H. Farrahi, G. 
Winter, W. Eichlseder, Improvement of high 
temperature fatigue lifetime in AZ91 magnesium 
alloy by heat treatment, Mater. Sci. Eng. A 588 (2013) 
[5] M. Mokhtarishirazabad, S.M.A. Boutorabi, M. Azadi, 
M. Nikravan, An investigation of high cycle fatigue 
behavior of magnesium alloy for cylinder head 
application, J. Engine Res. 24 (2011) 29–35.
[6] D. Lee, B. Kim, S.M. Baek, J. Kim, H.W. Park, J.G. Lee, 
S.S. Park, Microstructure and corrosion resistance of 
a Mg2Sn-dispersed Mg alloy subjected to pulsed 
electron beam treatment, J. Magnes. Alloy. 8 (2020) 
[7] D.I. Proskurovsky, V.P. Rotshtein, G.E. Ozur, A.B. 
Markov, D.S. Nazarov, V.A. Shulov, Y.F. Ivanov, R.G. 
Buchheit, Pulsed electron-beam technology for 
surface modification of metallic materials, J. Vac. Sci. 
Technol. A Vacuum, Surfaces, Film. 16 (1998) 2480–
[8] B. Gao, S. Hao, J. Zou, W. Wu, G. Tu, C. Dong, Effect of 
high current pulsed electron beam treatment on 
surface microstructure and wear and corrosion 
resistance of an AZ91HP magnesium alloy, Surf. 
Coatings Technol. 201 (2007) 6297–6303.
[9] S. Hao, X. Zhang, X. Mei, T. Grosdidier, C. Dong, 
Surface treatment of DZ4 directionally solidified 
nickel-based superalloy by high current pulsed 
electron beam, Mater. Lett. 62 (2008) 414–417.
[10] J. Kim, S.S. Park, H.W. Park, Corrosion inhibition and 
surface hardening of KP1 and KP4 mold steels using 
pulsed electron beam treatment, Corros. Sci. 89 
(2014) 179–188.
[11] Y. Samih, G. Marcos, N. Stein, N. Allain, E. Fleury, C. 
Dong, T. Grosdidier, Microstructure modifications 
and associated hardness and corrosion 
improvements in the AISI 420 martensitic stainless 
steel treated by high current pulsed electron beam 
(HCPEB), Surf. Coatings Technol. 259 (2014) 737–
[12] J. Kim, H.W. Park, Influence of a large pulsed electron 
beam (LPEB) on the corrosion resistance of Ti-6Al-7Nb 
alloys, Corros. Sci. 90 (2015) 153–160.
[13] Y.R. Liu, K.M. Zhang, J.X. Zou, D.K. Liu, T.C. Zhang, 
Effect of the high current pulsed electron beam 
treatment on the surface microstructure and 
corrosion resistance of a Mg-4Sm alloy, J. Alloys 
Compd. 741 (2018) 65–75.
[14] Z. Zhang, J. Cai, L. Ji, X. Wang, Y. Li, S. Yang, P. Lv, X. 
Hou, Q. Guan, Microstructures and corrosion 
mechanism of AISI 304L stainless steel irradiated by 
high current pulsed electron beam, Prot. Met. Phys. 
Chem. Surfaces. 50 (2014) 650–658.
[15] V.P. Rotshtein, V.A. Shulov, Surface modification and 
alloying of aluminum and titanium alloys with lowenergy, high-current electron beams, J. Metall. 2011 
(2011) 673685.
[16] J.C. Walker, J.W. Murray, M. Nie, R.B. Cook, A.T. Clare, 
The effect of large-area pulsed electron beam melting 
on the corrosion and microstructure of a Ti6Al4V 
alloy, Appl. Surf. Sci. 311 (2014) 534–540.
[17] G. Bo, H. Yi, Z. Wenfeng, T. Ganfeng, Surface 
modification of Mg alloys AZ31 and ZK60-1Y by high 
current pulsed electron beam, Spec. Issues Magnes. 
Alloy., IntechOpen Publication (2011).
[18] S. Hao, M. Li, Producing nano-grained and Alenriched surface microstructure on AZ91 magnesium 
alloy by high current pulsed electron beam 
treatment, Nucl. Instruments Methods Phys. Res. 
Sect. B Beam Interact. with Mater. Atoms. 375 (2016) 
[19] X.D. Zhang, S.Z. Hao, X.N. Li, C. Dong, T. Grosdidier, 
Surface modification of pure titanium by pulsed 
electron beam, Appl. Surf. Sci. 257 (2011) 5899–
[20] M.E. Ikpi, J. Dong, W. Ke, Electrochemical 
investigation of the galvanic corrosion of AM60 and 
AD62 magnesium alloy in 0.1 M NaCl solution, Int. J. 
Electrochem. Sci. 10 (2015) 552–563.
[21] A. Kula, T. Tokarski, M. Niewczas, Comparative 
studies on the structure and properties of rapidly 
solidified and conventionally cast AM60 magnesium 
alloys, Mater. Sci. Eng. A 759 (2019) 346–356. 
[22] B. Kondori, R. Mahmudi, Effect of Ca additions on the 
microstructure, thermal stability and mechanical 
properties of a cast AM60 magnesium alloy, Mater. 
Sci. Eng. A. 527 (2010) 2014–2021.
[23] B. Gao, S. Hao, J. Zou, T. Grosdidier, L. Jiang, J. Zhou, C. 
Dong, High current pulsed electron beam treatment 
of AZ31 Mg alloy, J. Vac. Sci. Technol. A Vacuum, 
Surfaces, Film. 23 (2005) 1548–1553.
[24] W.J. Lee, Fabrication and characterization of 
corrosion-resistant surface layer on Mg-alloys by 
using large- pulsed electron beam (LPEB) irradiation 
process, MSc Thesis, Department of Mechanical 
Engineering, Ulsan National Institute of Science and 
Technology (2017).