Structural and Magnetic Properties of Pb-substituted CuFe2O4 Nanoparticles

Document Type : Original Article

Authors

1 School of Physics, Damghan University, Damghan, Iran

2 Functional Materials Lab, Department of Physics, Air University, PAF Complex E-9, Islamabad, Pakistan

10.22075/ppam.2026.39461.1178

Abstract

Lead-substituted copper ferrites (Cu1-xPbxFe2O4, x = 0.0–0.30) were synthesized via a sol–gel auto-combustion route to explore the structural and magnetic effects of Pb²⁺ incorporation. X-ray diffraction confirmed a tetragonal spinel phase (I41/amd) for low Pb content, which gradually evolved into a pseudo-cubic structure at higher substitution levels. The lattice parameters increased systematically with Pb doping, indicating lattice expansion and suppression of Jahn–Teller distortion. FTIR spectra revealed a red shift of both tetrahedral and octahedral metal–oxygen stretching modes, consistent with elongation of M–O bonds and partial Pb2+ occupancy of both sites. Magnetic measurements showed soft-ferromagnetic behavior with a notable increase in saturation magnetization (Ms) up to x = 0.25, followed by a decrease at higher Pb levels due to secondary phase formation and lattice strain. The reduction in coercivity (Hc) with Pb content reflects a weakening of magnetocrystalline anisotropy and lattice relaxation. These results highlight the structural flexibility and magnetic tunability of Pb-substituted CuFe2O4, emphasizing the role of large, nonmagnetic cations in controlling spinel ferrite functionality. 

Keywords

Main Subjects


© 2026 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Salih, S.J. and Mahmood, W.M., 2023. Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application. Heliyon9(6).
[2] Dippong, T., Levei, E.A. and Cadar, O., 2022. Investigation of structural, morphological and magnetic properties of MFe2O4 (M= Co, Ni, Zn, Cu, Mn) obtained by thermal decomposition. International Journal of Molecular Sciences23(15), p.8483.
[3] Gholizadeh, A. and Hosseini, S., 2025. Structural Modification and Enhanced Ferrimagnetism of Zn/Cr Co‐Substituted CuFe2O4 Spinels through Sol–Gel Synthesis. physica status solidi (a), p.2400901.
[4] Tarantino, S.C., Giannini, M., Carpenter, M.A. and Zema, M., 2016. Cooperative Jahn–Teller effect and the role of strain in the tetragonal-to-cubic phase transition in MgxCu1−xCr2O4IUCrJ3(5), pp.354-366.
[5] Kyono, A., Gramsch, S.A., Nakamoto, Y., Sakata, M., Kato, M., Tamura, T. and Yamanaka, T., 2015. High-pressure behavior of cuprospinel CuFe2O4: Influence of the Jahn-Teller effect on the spinel structure. American Mineralogist100(8-9), pp.1752-1761.
[6] Gholizadeh, A. and Hamrah, H., 2025. Cu1-xNixFe2-xLaxO4 ferrites: a synergetic impact of Ni/La co-substitution on enhancement of magnetic properties. Journal of Sol-Gel Science and Technology, 116(1), pp.520–534.
[7] Caddeo, F., Loche, D., Casula, M.F. and Corrias, A., 2018. Evidence of a cubic iron sub-lattice in t-CuFe2O4 demonstrated by X-ray Absorption Fine Structure. Scientific Reports8(1), p.797.
[8] Gholizadeh, A. and Hosseini, 2025. S. Zn/Co co-substitution: Tuning the physical properties of CuFe2O4 nanoparticles. Journal of Sol-Gel Science and Technology, 116(1), pp.508–519. 
[9] Xian, G., Kong, S., Li, Q., Zhang, G., Zhou, N., Du, H. and Niu, L., 2020. Synthesis of spinel ferrite MFe2O4 (M= Co, Cu, Mn, and Zn) for persulfate activation to remove aqueous organics: effects of M-site metal and synthetic method. Frontiers in chemistry8, p.177.
[10] Zohrabi, Y., 2024. Synthesis and application of magnetic ferrites (MFe2O4) in the removal of heavy metals from aqueous solutions: an updated review. Materials Science and Engineering: B299, p.117024.
[11] Hua, J., Cheng, Z., Chen, Z., Dong, H., Li, P. and Wang, J., 2021. Tuning the microstructural and magnetic properties of CoFe2O4/SiO2 nanocomposites by Cu2+ doping. RSC advances11(42), pp.26336-26343.
[12] Gholizadeh, A. and Hosseini, S., 2025. A synergetic impact of Zn/Fe co-substitution on enhancement physical properties of copper spinel ferrite. Journal of Sol-Gel Science and Technology 116(1), pp.154–165.
[13] Gabal, M.A., Katowah, D.F., Hussein, M.A., Al-Juaid, A.A., Awad, A., Abdel-Daiem, A.M., Saeed, A., Hessien, M.M. and Asiri, A.M., 2021. Structural and magnetoelectrical properties of MFe2O4 (M= Co, Ni, Cu, Mg, and Zn) ferrospinels synthesized via an egg-white biotemplate. ACS omega6(34), pp.22180-22187.
[14] Zhang, R., Qin, C., Bala, H., Wang, Y. and Cao, J., 2023. Recent progress in spinel ferrite (MFe2O4) chemiresistive based gas sensors. Nanomaterials13(15), p.2188.
[15] Humbe, A.V., Kounsalye, J.S., Somvanshi, S.B., Kumar, A. and Jadhav, K.M., 2020. Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution. Materials Advances1(4), pp.880-890.
[16] Ansari, S.M., Ghosh, K.C., Devan, R.S., Sen, D., Sastry, P.U., Kolekar, Y.D. and Ramana, C.V., 2020. Eco-friendly synthesis, crystal chemistry, and magnetic properties of manganese-substituted CoFe2O4 nanoparticles. ACS omega5(31), pp.19315-19330.
[17] Rajenimbalkar, R.S., Deshmukh, V.J., Patankar, K.K. and Somvanshi, S.B., 2024. Effect of multivalent ion doping on magnetic, electrical, and dielectric properties of nickel ferrite nanoparticles. Scientific Reports14(1), p.29547.
[18] Dippong, T., Deac, I.G., Cadar, O., Levei, E.A. and Petean, I., 2020. Impact of Cu2+ substitution by Co2+ on the structural and magnetic properties of CuFe2O4 synthesized by sol-gel route. Materials Characterization163, p.110248.
[19] Pawar, D.B., Khirade, P.P., Vinayak, V., Ravangave, L.S. and Rathod, S.M., 2020. Sol–gel auto-ignition fabrication of Gd3+ incorporated Ni0.5Co0.5Fe2O4 multifunctional spinel ferrite nanocrystals and its impact on structural, optical and magnetic properties. SN applied sciences2(10), p.1713.
[20] Sefatgol, R., Gholizadeh, A. and Hatefi, H., 2025. Enhancement of magnetic properties of bismuth-substituted Mn-Mg-Cu-Zn ferrite prepared by sol-gel route. Journal of Sol-Gel Science and Technology116(1), pp.90-103.
[21] Takalloo, F., Gholizadeh, A. and Ardyanian, M., 2024. Crystal structure-physical properties correlation in Ni–Cu–Zn spinel ferrite. Journal of Materials Science: Materials in Electronics35(27), p.1792.
[22] Benali, A., Saher, L., Bejar, M., Dhahri, E., Graca, M.F.P., Valente, M.A., Sanguino, P., Helguero, L.A., Bachari, K., Silva, A.M. and Costa, B.F.O., 2023. CoFe2O4 spinel ferrite studies on permanent magnet application and cytotoxic effects on breast and prostate cancer cell lines. Journal of Materials Science: Materials in Electronics34(1), p.53.
[23] Shannon, R.T. and Prewitt, C.T., 1969. Effective ionic radii in oxides and fluorides. Structural Science25(5), pp.925-946.
[24] Marinca, T.F., Chicinaş, I. and Isnard, O., 2013. Structural and magnetic properties of the copper ferrite obtained by reactive milling and heat treatment. Ceramics International39(4), pp.4179-4186.
[25] Choupani, M. and Gholizadeh, A., 2024. Correlation between structural phase transition and physical properties of Co2+/Gd3+ co-substituted copper ferrite. Journal of Rare Earths42(7), pp.1344-1353.
[26] Pan, L. and Xu, B., 2013. Synthesis of spinel-structure CuFe2O4 nanoparticles and their effective electrocatalysis properties. JOM65(6), pp.695-701.
[27] Gholizadeh, A., 2017. A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods. Journal of the american ceramic society100(8), pp.3577-3588.
[28] Satheeshkumar, M.K., Kumar, E.R., Srinivas, C., Prasad, G., Meena, S.S., Pradeep, I., Suriyanarayanan, N. and Sastry, D.L., 2019. Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by cow urine assisted combustion method. Journal of Magnetism and Magnetic Materials484, pp.120-125.
[29] Jasim, S.A., Patra, I., Opulencia, M.J.C., Hachem, K., Parra, R.M.R., Ansari, M.J., Jalil, A.T., Al-Gazally, M.E., Naderifar, M., Khatami, M. and Akhavan-Sigari, R., 2022. Green synthesis of spinel copper ferrite (CuFe2O4) nanoparticles and their toxicity. Nanotechnology Reviews11(1), pp.2483-2492.
[30] Eghdami, F. and Gholizadeh, A., 2023. A correlation between microstructural and impedance properties of MnFe2-xCoxO4 nanoparticles. Physica B: Condensed Matter650, p.414551.
[31] Mulud, F.H., Dahham, N.A. and Waheed, I.F., 2020, November. Synthesis and characterization of copper ferrite nanoparticles. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 7, p. 072125). IOP Publishing.
[32] Spaldin, N.A., 2011. Magnetic materials: fundamentals and applications. Cambridge university press.
[33] Hamrah, H. and Gholizadeh, A., 2025. Exploring Bismuth-Induced Structural Modifications and Magnetic Phase Transitions in CuFe2O4 Ferrite. Progress in Physics of Applied Materials5(2), pp.107-117.
[34] Gholizadeh, A. and Hosseini, S., 2026. Structural and Magnetic Phase Transitions in Cu1-3xZn2xMnxFe2O4 Ferrites. Progress in Physics of Applied Materials6(1), pp.1-13.
[35] Gholizadeh, A. and Jafari, E., 2017. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere. Journal of Magnetism and Magnetic Materials422, pp.328-336.
[36] Gholizadeh, A., 2018. A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere. Journal of Magnetism and Magnetic Materials452, pp.389-397.
[37] Gholizadeh, A. and Beyranvand, M., 2020. Investigation on the structural, magnetic, dielectric and impedance analysis of Mg0. 3-xBaxCu0.2Zn0.5Fe2O4 nanoparticles. Physica B: Condensed Matter584, p.412079.
[38] Sayyar, S., Aslibeiki, B. and Asgari, A., 2022. CoFe2O4 bulk, nanoparticles and layer: A comparison of structural, magnetic, and optical properties. Progress in Physics of Applied Materials2(2), pp.165-173.