[1] Kapse, S., Benny, B., Mandal, P. and Thapa, R., 2021. Design principle of MoS2/C heterostructure to enhance the quantum capacitance for supercapacitor application. Journal of Energy Storage, 44, p.103476.
[2] Kolavada, H., Gajjar, P.N. and Gupta, S.K., 2024. Unraveling quantum capacitance in supercapacitors: Energy storage applications. Journal of Energy Storage, 81, p.110354.
[3] Zhou, Q., Wang, L., Ju, W., Su, D., Zhu, J., Yong, Y. and Wu, S., 2023. Quantum capacitance of graphene-like/graphene heterostructures for supercapacitor electrodes. Electrochimica Acta, 461, p.142655.
[4] Sanglaow, T., Prasert, K., Chanthad, C., Liangruksa, M. and Sutthibutpong, T., 2024. A DFT study on the fundamental mechanisms of quantum capacitance enhancement within the carbon-based electrodes through different classes of doped configurations from biomass-derived elements. Results in Materials, 21, p.100529.
[5] Guo, W., Yu, C., Li, S. and Qiu, J., 2021. Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy & Environmental Science, 14(2), pp.576-601.
[6] Horn, M., Gupta, B., MacLeod, J., Liu, J. and Motta, N., 2019. Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials. Current Opinion in Green and Sustainable Chemistry, 17, pp.42-48.
[7] Zhou, Q., Ju, W., Yong, Y., Zhang, Q., Liu, Y. and Li, J., 2020. Effect of the N/P/S and transition-metal co-doping on the quantum capacitance of supercapacitor electrodes based on mono-and multilayer graphene. Carbon, 170, pp.368-379.
[8] Hashemi, A., Naseri, M., Shahidi, M.M., Mojtabazadeh, H., Salehi, N. and Chireh, M., 2026. Synthesis and Investigation of Different Properties of K2FeO4/ZnO and Its GO-Based Nanocomposites. Progress in Physics of Applied Materials, 6(1), pp.43-55.
[9] Haji, R. and Sanavi Khoshnood, D., 2026. Structural, Magnetic, and Electrical Properties of REFe0.7Cr0.3O3 (RE= La, Pr, Nd, Sm, and Gd) Compounds. Progress in Physics of Applied Materials, 6(1), pp.57-68.
[10] Kumar, A., Pant, M., Mishra, D., Kaur, G., Kumar, D., Kaur, R., Blamah, B.K., Kumar, N., Rustagi, S. and Singh, D., 2026. Sustainable Gold Nanoparticles Possessed Significant Activity Against Cancer Cell Lines (MCF-7, HeLa, and A549). Progress in Physics of Applied Materials, 6(2), pp.137-149.
[11] Kliros, G.S., 2020. Strain effects on the quantum capacitance of graphene nanoribbon devices. Applied Surface Science, 502, p.144292.
[12] Yang, G.M., Zhang, H.Z., Fan, X.F. and Zheng, W.T., 2015. Density functional theory calculations for the quantum capacitance performance of graphene-based electrode material. The Journal of Physical Chemistry C, 119(12), pp.6464-6470.
[13] Bo, Z., Wen, W., Chen, Y., Guo, X., Yang, H., Yan, J., Cen, K. and Liu, Z., 2024. Effect of nitrogen and transition-metal co-doping on quantum capacitance enhancement of graphene as supercapacitor electrodes: A density functional theory study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, p.132686.
[14] Li, X.H., Li, S.S., Cui, X.H., Zhang, R.Z. and Cui, H.L., 2021. First-principle study of electronic properties and quantum capacitance of lithium adsorption on pristine and vacancy-defected O-functionalized Ti2C MXene. Applied Surface Science, 563, p.150264.
[15] Chandiramouli, R., 2015. Exploring electronic transport properties of AlN nanoribbon molecular device–a first-principles investigation. Solid State Sciences, 39, pp.45-51.
[16] Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M. and Colonna, N., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of physics: Condensed matter, 29(46), p.465901.
[17] Perdew, J.P., Burke, K. and Ernzerhof, M., 1996. Generalized gradient approximation made simple. Physical review letters, 77(18), p.3865.
[18] Monkhorst, H.J. and Pack, J.D., 1976. Special points for Brillouin-zone integrations. Physical review B, 13(12), p.5188.
[19] Zheng, F.L., Zhang, J.M., Zhang, Y. and Ji, V., 2010. First-principles study of the perfect and vacancy defect AlN nanoribbon. Physica B: Condensed Matter, 405(17), pp.3775-3781.
[20] Du, A.J., Zhu, Z.H., Chen, Y., Lu, G.Q. and Smith, S.C., 2009. First principle studies of zigzag AlN nanoribbon. Chemical physics letters, 469(1-3), pp.183-185.
[21] Zhang, C.W., 2012. First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. Journal of Applied Physics, 111(4).
[22] Ghasemzadeh, F. and Kanjouri, F., 2019. Electronic and optical properties of AlN nanosheet under uni-axial strain. International Journal of Nanoscience and Nanotechnology, 15(1), pp.21-26.
[23] Mousavi-Khoshdel, M., Targholi, E. and Momeni, M.J., 2015. First-principles calculation of quantum capacitance of codoped graphenes as supercapacitor electrodes. The Journal of Physical Chemistry C, 119(47), pp.26290-26295.
[24] Reddy, A.S., Bhattacharya, S., Bhattacharjee, A. and Kanungo, S., 2024. EDL supercapacitor electrode performance analysis of group-VIB and group-X transition metal adsorbed and doped graphene: a density functional theory based comparative investigation. ACS Applied Electronic Materials, 6(7), pp.5301-5313.
[25] Jalilian, J., Rezaei, G., Vaseghi, B., Zare, E., Taghizadeh, F. and Mardani-Fard, H.A., 2025. Quantum capacitance of decorated and doped B9 boron monolayer as electrodes for supercapacitors: Density Functional theory. Journal of Energy Storage, 107, p.114843.