High-Performance Solar Cells Systems with ZnO+ Spiro-OMeTAD Perovskite- NiO layers

Document Type : Original Article

Authors

1 Department of solid state Physics, University of Mazandaran, Babolsar, Iran

2 Department of Applied Medical Physics, University of Hilla, Babylon, Iraq

10.22075/ppam.2025.40003.1190

Abstract

Achieving a suitable electron-transporting layer for balancing electron- hole numbers, and the accumulation of electrical charges at HTL/anode interface layer, remains a key challenge for perovskite-organic solar cells (PSC) application. Here, ZnO, NiO, and spiro- OMeTAD (SOT) as electron-transporting layers (ETLs)/ perovskite/ SOT as hole-transporting layers (HTLs) of PSC have been widely analyzed. To find better ETL- materials in PSCP systems for balancing the difference between electron- hole (e-h) diffusion distance, and acting as a hole barrier material for  reducing the recombination ratio  of e - h at the active layer, Al (cathode), ZnO/NiO+10wt.% SOT as ETL, perovskite-SOT as the active layer, and SOT as HTL and anode layer of PSCP systems are investigated with the help of relevant spectroscopic techniques, home- set electrical systems, ABET Technologies, Sun 2000 solar simulator, and microscopic images. In the ETL layer, ZnO/10% wt. of SOT with zero, 25, 50, 75, and 100 wt.% of NiO particles, shows that sample with 75% NiO particles, with higher carrier mobility (62.5 cm2/V.S), higher power conversion efficiency (PCE= 8.3%), higher fill factor (FF=67%), lower hysteresis loop, and lower SS (1.3 mV/dec.) can be used as desirable ETL for the next PSCP systems.

Keywords

Main Subjects


© 2026 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Aulakh, R.K., Singh, G., Pathak, D., Singh, R.I., Mittal, A. and Kohli, R., 2025. A Review on Progresses and Developments in Solar cell Technologies. Journal of Solar Energy Research10(3), pp.2501-2521.
[2] Sarvi, M., Ebrahimnaz, R. and Zarei Zohdi, H., 2024. A New High Gain DC-DC Converter for Solar System. Journal of Solar Energy Research9(4), pp.2115-2124.
[3] Pérez‐Martínez, J.C., Berruet, M., Gonzales, C., Salehpour, S., Bahari, A., Arredondo, B. and Guerrero, A., 2023. Role of metal contacts on halide perovskite memristors. Advanced Functional Materials33(47), p.2305211.
[4] Raisa, A.T., Sakib, S.N., Hossain, M.J., Rocky, K.A. and Kowsar, A., 2025. Advances in multijunction solar cells: an overview. Solar Energy Advances, p.100105.
[5] Saddam, J. and Jaduaa, M., 2025. Design and Fabrication of a Multi-Junction Hybrid Heterostructure Based on ZnO/CuO/PS/Si for Advanced Optoelectronic Applications. Journal of Solar Energy Research10(1), pp.2161-2175.
[6] Cao, F., Zhan, S., Dai, X., Cheng, F., Li, W., Feng, Q., Huang, X., Yin, J., Li, J., Zheng, N. and Wu, B., 2024. Redox-Sensitive NiO x Stabilizing Perovskite Films for High-Performance Photovoltaics. Journal of the American Chemical Society146(17), pp.11782-11791.
[7] Bahari, A., 2024. Eco-friendly water-induced lithium oxide/polyethyleneimine ethoxylated as a possible gate dielectric of the organic field effect transistor. Journal of Materials Science: Materials in Electronics, 35, pp.1709-1715. 
[8] Liu, Y., Zhang, Z., Wu, T., Xiang, W., Qin, Z., Shen, X., Peng, Y., Shen, W., Li, Y. and Han, L., 2025. Cost Effectivities Analysis of perovskite Solar Cells: Will it Outperform Crystalline Silicon Ones? Nano-Micro Letters, 17(1), p.219.
[9] Teymoriyan, M., Naderi Saatlo, A. and Salimi, M. 2024. Environmental Aspect of Using a High Step-Up No Isolated DC-DC Converter for Solar Photovoltaic Applications: Life Cycle Assessment Point of View. Journal of Solar Energy Research, 9(3), pp.1942-1953.
[10] Asgary, S., Milani M. H., Bahari A., and Mohammadpour R., 2021. Role of BCP layer on nonlinear properties of perovskite solar cell, Solar Energy, 213, pp.383-393.
[11] Qureshi, A.A., Javed, S., Akram, M.A., Schmidt-Mende, L. and Fakharuddin, A., 2023. Solvent-assisted crystallization of an α-Fe2O3 electron transport layer for efficient and stable perovskite solar cells featuring negligible hysteresis. ACS omega8(20), pp.18106-18115.
[12] Alaameri, K.J., 2025. Numerical Analysis of the Performance for a Hybrid Renewable System. Journal of Solar Energy Research10(3), pp.2465-2474.
[13] Fara, L., Chilibon, I., Craciunescu, D., Diaconu, A. and Fara, S., 2023. Heterojunction tandem solar cells on Si-based metal oxides. Energies16(7), p.3033.
[14] Paul, D.,  Maiti, S.,  Prakash, S.D. and  Neogi, S., 2022. Bi-functional NiO–ZnO nanocomposite: synthesis, characterization, antibacterial and photo-assisted degradation study. Advanced Powder Technology, 32, pp.131-138.
[15] Zhang, W., Cojocaru, L., Tamegai, H., Uchida, S., Nakazaki, J., Bessho, T., Liu, X. and Segawa, H., 2025. NiOx nanoparticles as p-dopants for instant oxidation of Spiro-OMeTAD enabling high-performance and stable perovskite solar cells. Nano Energy, p.111499.
[16] Kim, H., Choi, D.S., Na, S.I. and Zong, K., 2021. Synthesis and Photovoltaic Properties of Benzotrithiophene-Based Polymer/Non-fullerene Solar Cells. Journal of Electronic Materials50(11), pp.6363-6371.
[17] Cardozo, O.,  Maia, J., R., Farooq, S., Tostes, B., Stingl, A., Farias, P. and Alves Junior, S., 2025.  Zinc oxide nanostructures for third generation solar cells: A comprehensive review. Solar Energy, 299, pp.113710-113721.
[18] Shahmiri, M.R., Bahari, A., Rostamian, F. and Khaniani, M.B., 2019. Estimation of lattice strain in metallic oxide–organic material nanocomposite using Williamson-Hall equation. IJPR15(3).
[19] Ali, Z.H., Bahari, A. and Alarajiy, A.H., 2024. Investigation the effect of concentration (x) in polyvinyl alcohol (PVA) x/nickel phthalocyanine (NiPc)(1-x) nano composites: Real & imaginary component of permeability and optical conductivity. Optical Materials148, p.114862.
[20] Albarrak, A.A., Sowilam, G.M. and Kawady, T.A., 2025. Hybrid renewable energy systems in Saudi Arabia: exploring solar-wind integration with fuel cell hydrogen storage. Journal of Umm Al-Qura University for Engineering and Architecture16(2), pp.482-500.
[21] Najafi-Ashtiani, H. and Bahari, A., 2016. Optical and cyclic voltammetry behavior studies on nanocomposite film of copolymer and WO3 grown by electropolymerization. Synthetic Metals217, pp.19-28.
[22] Shajari, D., Bahari, A., Gill, P. and Mohseni, M., 2017. Synthesis and tuning of gold nanorods with surface plasmon resonance. Optical Materials64, pp.376-383.
[23] Hoseinzadeh, S., Sahebi, S.A.R., Ghasemiasl, R. and Majidian, A.R., 2017. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water). The european physical journal plus132(5), p.197.