[1] Yue, Z., Xiang, G., Zhang, J., Zhang, X., Song, C., Ding, B. et al., 2024. Low current driven bidirectional violet light emitting diode based on p-GaN/n-InN heterojunction. Journal of Luminescence, 266, p.120295.
[2] Chouchen, B., Ducroquet, F., Nasr, S., Alzahrani, A.Y., Hajjiah, A.T. and Gazzah, M.H., 2022. InxGa1−xN/GaN double heterojunction solar cell optimization for high temperature operation. Solar Energy Materials and Solar Cells, 234, p.111446.
[3] Dada, M. and Popoola, P., 2023. Recent advances in solar photovoltaic materials and systems for energy storage applications: A review. Beni-Suef University Journal of Basic and Applied Sciences, 12, pp.1–15.
[4] Khairuddin, N.S., Yusoff, M.M. and Hussin, H., 2023. The effects of thickness and doping concentration on the solar efficiency of GaN/p-Si based solar cells. Chalcogenide Letters, 20, pp.629–637.
[5] Hijjawi, U., Lakshminarayana, S., Xu, T., Fierro, G.P.M. and Rahman, M., 2023. A review of automated solar photovoltaic defect detection systems: Approaches, challenges, and future orientations. Solar Energy, 266, p.112186.
[6] Wei, Z., Al-Nuaimi, N. and Gemming, S., 2025. Optimization of InGaN-based solar cells by numerical simulation: Enhanced efficiency and performance analysis. Next Materials, 6, p.100325.
[7] Zumahi, S.A.A., Basher, M.K., Arobi, N., Rahman, M.M., Tawfeek, A.M., Akand, M.R. et al., 2024. High-efficiency silicon solar cells designed on experimentally achieved nano-engineered low-reflective silicon surface. Journal of Optics, pp.1–15.
[8] Armakavicius, N., Knight, S., Kühne, P., Stanishev, V., Tran, D.Q., Richter, S. et al., 2024. Electron effective mass in GaN revisited: New insights from terahertz and mid-infrared optical Hall effect. APL Materials, 12, p.021114.
[9] Linkai, Y., Haoran, Q., Jialin, H., Mei, Z., Degang, Z., Desheng, J. et al., 2018. Influence of dislocation density and carbon impurities in i-GaN layer on the performance of Schottky barrier ultraviolet photodetectors. Materials Research Express, 5, p.046207.
[10] Faleev, N., Jampana, B., Jani, O., Yu, H., Opila, R., Ferguson, I. and Honsberg, C., 2009. Correlation of crystalline defects with photoluminescence of InGaN layers. Applied Physics Letters, 95, p.051914.
[11] Bronger, T. and Carius, R., 2007. Carrier mobilities in microcrystalline silicon films. Thin Solid Films, 515, pp.7486–7489.
[12] Das, D. and Patra, C., 2023. Superior phosphorous doping in nanocrystalline silicon thin films and their application as emitter layers in silicon heterojunction solar cells. Energy & Fuels, 37, pp.6062–6077.
[13] Wu, N., Xing, Z., Li, S., Luo, L., Zeng, F. and Li, G., 2023. GaN-based power high-electron-mobility transistors on Si substrates: From materials to devices. Semiconductor Science and Technology, 38, p.063002.
[14] Danladi, E., Egbugha, A.C., Obasi, R.C., Tasie, N.N., Achem, C.U., Haruna, I.S. and Ezeh, L.O., 2023. Defect and doping concentration study with series and shunt resistance influence on graphene modified perovskite solar cell: A numerical investigation in SCAPS-1D framework. Journal of the Indian Chemical Society, 100, p.101001.
[15] Tiandho, Y., Sunanda, W., Afriani, F., Indriawati, A. and Handayani, T.P., 2018. Accurate model for temperature dependence of solar cell performance according to phonon energy correction. Latvian Journal of Physics and Technical Sciences, 55, pp.15–25.
[16] Song, J.J., Zhang, H.M., Hu, H.Y., Dai, X.Y. and Xuan, R.X., 2011. Intrinsic carrier concentration in strained Si1−xGex/(101)Si. Materials Science Forum, 663, pp.470–472.
[17] Lock, D., Sweeney, S.J., Adams, A.R. and Robbins, D.J., 2003. Auger recombination in InGaAs/AlGaAs-based MQW semiconductor lasers emitting at 980 nm. Physica Status Solidi (b), 235, pp.542–546.
[18] Tanaka, K. and Kato, M., 2024. Carrier recombination in highly Al-doped 4H-SiC: Dependence on the injection conditions. Japanese Journal of Applied Physics, 63, p.011002.
[19] Ming, C., Zhou, H., Wu, J., Hu, C., Fan, W., Ma, X. et al., 2023. The design and performance optimization of all-inorganic CsPbIBr2/CsSnI3 heterojunction perovskite solar cells. Solar Energy, 263, p.111885.
[20] Marouf, Y., Dehimi, L., Bouzid, F., Pezzimenti, F. and Della Corte, F.G., 2018. Theoretical design and performance of InxGa1−xN single junction solar cell. Optik, 163, pp.22–32.
[21] Adaine, A., Hamady, S.O.S. and Fressengeas, N., 2016. Simulation study of a new InGaN p-layer free Schottky based solar cell. Superlattices and Microstructures, 96, pp.121–133.
[22] Ghosh, B.K., Mohamad, K.A., Saad, I. and Zainal, S.S.M., 2014. Performance analysis based on different indium content for InGaN/Si heterojunction solar cell. Proceedings of the 3rd IET International Conference on Clean Energy and Technology (CEAT 2014), p.33.
[23] Nour, S., Merabti, A., Issani, H., Abdeldjebar, R. and Djatout, A., 2023. Optimization the characteristics of solar cell based on InGaN. Turkish Journal of Computer and Mathematics Education, 14, pp.1–9.
[24] Shan, H.S., Li, X.Y., Chen, B., Ma, S.F., Li, L. and Xu, B.S., 2019. Effect of indium composition on the microstructural properties and performance of InGaN/GaN MQWs solar cells. IEEE Access, 7, pp.182573–182579.
[25] Bouadia, A., Naima, H., Djelloulc, A., Benkrimad, Y. and Farese, R., 2022. Enhancing the efficiency of the gallium indium nitride (InGaN) solar cell by optimizing the effective parameters. Chalcogenide Letters, 19, pp.611–619.
[26] Salmaniannezhad, H., Salmaniannezhad, H., Zarei Moghadam, R., Khani, M., Ardani, M. and Shokri, B., 2023. Design and fabrication of multi-layers antireflection coating consisting of MgF2 and SiO2. Progress in Physics of Applied Materials, 3(2), pp.141-146.