An Examination from Fundamental Principles Regarding the Structural, Elastic, Electronic, Magnetic, and Optical Characteristics of F Based Oxide full-Heusler Compounds

Document Type : Original Article

Author

Faculty of Sciences and Technology, Department of Science and Technology, BP227 Abdelhamid Ibn Badis University, 27000, Mostaganem, Algeria -Laboratory of Modelling and Simulation of Materials Science, Djillali Liabès University of Sidi Bel-Abbès, 22000, Sidi Bel-Abbes, Algeria

Abstract

This study presents a comprehensive investigation of the structural, electronic, magnetic, elastic, and optical properties of full‑Heusler compounds O₂XF (X = Ca, Sr, Ba) using first‑principles calculations based on density functional theory (DFT). The computations were carried out using the full‑potential linearized augmented plane wave (FP‑LAPW) method implemented in WIEN2k. The exchange–correlation potential was described using the generalized gradient approximation (GGA‑PBE), while the Tran–Blaha modified Becke–Johnson (TB‑mBJ) potential was applied to obtain accurate electronic structures. All compounds are found to crystallize in the Hg₂CuTi‑type structure with a ferromagnetic ground state. Elastic constants calculated via the IRelast module confirm their mechanical stability and ductile nature. Band structure and density of states (DOS) analyses reveal half‑metallic behavior: the majority‑spin channel exhibits a semiconducting character, whereas the minority‑spin channel remains metallic. The total magnetic moment of 3 μB per formula unit for all compounds agrees well with the Slater–Pauling rule Mtot=(24−Ztot) μB. Overall, the O₂XF (X = Ca, Sr, Ba) full‑Heusler alloys are identified as mechanically robust half‑metallic ferromagnets with 100% spin polarization, making them strong candidates for future spintronic and sustainable energy applications.

Keywords

Main Subjects


© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Zarkevich, N.A., Singh, P., Smirnov, A.V. and Johnson, D.D., 2022. Effect of substitutional doping and disorder on the phase stability, magnetism, and half-metallicity of Heusler alloys. Acta Materialia225, p.117477.
[2] Hirohata, A. and Lloyd, D.C., 2022. Heusler alloys for metal spintronics. MRS Bulletin47(6), pp.593-599.
[3] Tavares, S., Yang, K. and Meyers, M.A., 2023. Heusler alloys: Past, properties, new alloys, and prospects. Progress in Materials Science132, p.101017.
[4] Saleem, M. and Shakil, M., 2023. Determination of tunnelling magneto resistance of magnetic tunnel junction designed using Co2TiAl Heusler alloy with MgO spacer layer. Physica B: Condensed Matter649, p.414458.
[5] Shakil, M., Kousar, M., Gillani, S.S.A., Rizwan, M., Arshad, H., Rafique, M. and Zafar, M., 2022. First principle computation of half metallicity and mechanical properties of a new series of half Heusler alloys KMnZ (Z= B, Si, Ge, As) for spintronics. Indian Journal of Physics96(1), pp.115-126.
[6] Idrissi, S., Khalladi, R., Ziti, S., El Mekkaoui, N., Mtougui, S., Labrim, H. and El Housni, I., 2019. The electronic and magnetic proprieties of the rare earth-based quaternary Heusler compound LuCoVGe. Physica B: Condensed Matter562, pp.116-123.
[7] Chatterjee, S., Chatterjee, S., Giri, S. and Majumdar, S., 2021. Transport properties of Heusler compounds and alloys. Journal of Physics: Condensed Matter34(1), p.013001.
[8] Abada, A., Amara, K., Hiadsi, S. and Amrani, B., 2015. First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe. Journal of Magnetism and Magnetic Materials388, pp.59-67.
[9] Zhang, Y.J., Liu, Z.H., Li, G.T., Ma, X.Q. and Liu, G.D., 2014. Magnetism, band gap and stability of half-metallic property for the quaternary Heusler alloys CoFeTiZ (Z= Si, Ge, Sn). Journal of alloys and compounds616, pp.449-453.
[10] Behbahani, M.A., Moradi, M., Rostami, M. and Davatolhagh, S., 2016. First principle study of structural, electronic and magnetic properties of half-Heusler IrCrZ (Z= Ge, As, sn and sb) compounds. Journal of Physics and Chemistry of Solids92, pp.85-93.
[11] Jaiganesh, G. and Jaya, S.M., 2015. Magnetism, electronic structure and half-metallic property of transition metal (V, Cr, Mn, Fe, Co) substituted Zn3P2 dilute magnetic semiconductors: An ab-initio study. Computational Materials Science102, pp.85-94.
[12] Kervan, S. and Kervan, N., 2015. First-principles study on half-metallic ferromagnetism in the diluted magnetic semiconductor (DMS) Al1−xMnxP compounds. Journal of Magnetism and Magnetic Materials382, pp.63-70.
[13] Rostami, M., Moradi, M., Javdani, Z. and Salehi, H., 2015. The electronic, magnetic and optical properties of Cr-doped MC (M= Si, Ge and Sn): a density functional theory approach. Materials Science in Semiconductor Processing38, pp.218-227.
[14] Mahdy A.M.S., Lotfy K., El-Bary A., Sarhan H.H. (2021). Effect of rotation and magnetic field on a numerical-refined heat conduction in a semiconductor medium during photo-excitation processes, Eur. Phys. J. Plus. 136, 1-17.
[15] Mahdy, A.M.S., Lotfy, K. and El-Bary, A., 2022. Thermo-optical-mechanical excited waves of functionally graded semiconductor material with hyperbolic two-temperature. The European Physical Journal Plus137(1), p.105.
[16] Yasein, M.D., Mabrouk, N., Lotfy, K. and El-Bary, A.A., 2019. The influence of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type. Results in Physics15, p.102766.
[17] Ezzat, M.A. and El-Bary, A.A., 2016. Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. International Journal of Thermal Sciences108, pp.62-69.
[18] Ezzat, M.A., El-Bary, A.A. and Morsey, M.M., 2010. Space approach to the hydro-magnetic flow of a dusty fluid through a porous medium. Computers & Mathematics with Applications59(8), pp.2868-2879.
[19] Ezzat, M., El-Bary, A.A. and Ezzat, S., 2011. Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation. Energy conversion and management52(2), pp.934-945.
[20] Hariharan, M. and Eithiraj, R.D., 2024. Structural, electronic, magnetic, and thermoelectric properties of newly predicted Fe2CoS and Ni2CoS alloys for spintronics applications: A DFT study. Journal of Magnetism and Magnetic Materials589, p.171553.
[21] De Groot, R.A., Mueller, F.M., van Engen, P.V. and Buschow, K.H.J., 1983. New class of materials: half-metallic ferromagnets. Physical review letters50(25), p.2024.
[22] Felser, C., Heitkamp, B., Kronast, F., Schmitz, D., Cramm, S., Dürr, H.A., Elmers, H.J., Fecher, G.H., Wurmehl, S., Block, T. and Valdaitsev, D., 2003. Investigation of a novel material for magnetoelectronics: Co2Cr0. 6Fe0. 4Al. Journal of Physics: Condensed Matter15(41), p.7019.
[23] Kieven, D., Klenk, R., Naghavi, S., Felser, C. and Gruhn, T., 2010. I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations. Physical Review B—Condensed Matter and Materials Physics81(7), p.075208.
[24] Kautzsch, L., Mende, F., Fecher, G.H., Winterlik, J. and Felser, C., 2019. Are AuPd TM (T= Sc, Y and M= Al, Ga, In), Heusler Compounds Superconductors without Inversion Symmetry?. Materials12(16), p.2580.
[25] Zeng, Q., Du, Z., Han, X., Wang, B., Wu, G. and Liu, E., 2024. Observation of atomically displacive transformation out of the boundary-reconstructive phase competition. Acta Materialia262, p.119429.
[26] Dieny, B., Speriosu, V.S., Parkin, S.S., Gurney, B.A., Wilhoit, D.R. and Mauri, D., 1991. Giant magnetoresistive in soft ferromagnetic multilayers. Physical Review B43(1), p.1297.
[27] Song, T., Cai, X., Tu, M.W.Y., Zhang, X., Huang, B., Wilson, N.P., Seyler, K.L., Zhu, L., Taniguchi, T., Watanabe, K. and McGuire, M.A., 2018. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science360(6394), pp.1214-1218.
[28] Cho, Y.M., Choo, W.K., Kim, H., Kim, D. and Ihm, Y., 2002. Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn 1− x (Co 0.5 Fe 0.5) x O thin films. Applied Physics Letters80(18), pp.3358-3360.
[29] Gilleßen, M. and Dronskowski, R., 2009. A combinatorial study of full Heusler alloys by first‐principles computational methods. Journal of computational chemistry30(8), pp.1290-1299.
[30] Nazemi, N., Ahmadian, F. and Boochani, A., 2023. Investigation of half-metallic properties of full-Heusler alloys of O2BaX (X= Na, K, Rb, and Cs). Chemical Physics Letters830, p.140751.
[31] Ahmad, M., Murtaza, G., Khenata, R., Omran, S.B. and Bouhemadou, A., 2015. Structural, elastic, electronic, magnetic and optical properties of RbSrX (C, SI, Ge) half-Heusler compounds. Journal of Magnetism and Magnetic Materials377, pp.204-210.
[32] Safavi, M., Moradi, M. and Rostami, M., 2017. Structural, electronic and magnetic properties of NaKZ (Z= N, P, As, and Sb) half-Heusler compounds: a first-principles study. Journal of Superconductivity and Novel Magnetism30(4), pp.989-997.
[33] Zhao, J.S., Gao, Q., Li, L., Xie, H.H., Hu, X.R., Xu, C.L. and Deng, J.B., 2017. First-principles study of the structure, electronic, magnetic and elastic properties of half-Heusler compounds LiXGe (X= Ca, Sr and Ba). Intermetallics89, pp.65-73.
[34] Rostami, M., 2018. Half-metallic property of the bulk and (001) surfaces of MNaCs (M= P, As) half-Heusler alloys: a density functional theory approach. Surface Science674, pp.103-114.
[35] Benatmane, S. and Bouhafs, B., 2019. Investigation of new d0 half-metallic full-heusler alloys N2BaX (X= Rb, Cs, Ca and Sr) using first-principle calculations. Computational Condensed Matter19, p.e00371.
[36] Benatmane, S., (2022). Theoretical investigations of structural, mechanical, electronic, and thermodynamic properties of BaNYO (Y= Mg, Ca, and Sr) alloys. emergent mater5 (6), pp. 1797-1817.
[37] Benatmane, S. and Cherid, S., 2020. First-Principles Study of Magnetism and Half-Metallic Properties of the d0 Quaternary Heusler Alloys BaNYO (Y= K, Rb and Cs). Journal of Experimental and Theoretical Physics Letters (JETP Letters).
[38] Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. and Luitz, J., 2012.  WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria.
[39] Kulkova, S.E., Eremeev, S.V., Kakeshita, T., Kulkov, S.S. and Rudenski, G.E., 2006. The electronic structure and magnetic properties of full-and half-Heusler alloys. Materials transactions47(3), pp.599-606.
[40] Perdew, J.P., Burke, K. and Ernzerhof, M., 1996. Generalized gradient approximation made simple. Physical review letters77(18), p.3865.
[41] Koller, D., Tran, F. and Blaha, P., 2012. Improving the modified Becke-Johnson exchange potential. Physical Review B—Condensed Matter and Materials Physics85(15), p.155109.
[42] Murnaghan, F.D., 1944. The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences30(9), pp.244-247.
[43] Benatmane, S., Affane, M., Bouali, Y., Bouadjemi, B., Cherid, S. and Benstaali, W., 2023. Phase stability, mechanical, electronic, magnetic and thermodynamic properties of the Pd2PrX (X= Cl, F) compounds: An Ab-initio study. Revista mexicana de física69(1), pp.0-0.
[45] Benatmane S., Beldi, L.,  Bendaoud, H., Méçabih, S., Abbar, B. and Bouhafs, B., 2019. Spin-polarized optical properties of half-metallic binary XBi (X = Ca, Sr and Ba) compounds in zinc blende and wurtzite phasesIndian  Journal Physics, 93, pp, 627-638
[46] Benatmane, S., 2025. Computational Determination of Structural, Electronic, Magnetic, Elastic, and Optical Properties of BaCaN3 and BaSrN3 Perovskites as Potential Spintronic Materials." Strength of Materials, 57 (3), pp, 646-657.
[47] Ouardi, S., Fecher, G.H., Balke, B., Beleanu, A., Kozina, X., Stryganyuk, G., Felser, C., Klöß, W., Schrader, H., Bernardi, F. and Morais, J., 2011. Electronic and crystallographic structure, hard x-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co 2 MnGe. Physical Review B—Condensed Matter and Materials Physics84(15), p.155122.
[48] Zhang, Y.Z., Wang, Y., Cheng, T., Lai, W.Y., Pang, H. and Huang, W., 2015. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews44(15), pp.5181-5199.
[49] Anderson, O.L., 1963. A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids24(7), pp.909-917.
[50] Johnston, I., Keeler, G., Rollins, R. and Spicklemire S., 1996. Solids state physics simulations, the consortium for upperlevel physics software. Wiley, New York.
[51] Newnham, R.E., 2005. Properties of materials: anisotropy, symmetry, structure. Oxford university press.
[52] Feng, J., Chen, J.C., Xiao, B., Zhou, C.T., Hong, Z.J. and Zhou, R., 2009. Stability, thermodynamic and mechanical properties of the compounds in the Ag–Sn–O system. Physica B: Condensed Matter404(16), pp.2461-2467.
[53] Schreiber E., Anderson, O.L., Soga, N. and Bell, J.F., 1975.  Elastic constants and their measurement, Journal of Applied Mechanics, 42, pp.747-748.
[54] Daoud, S., Loucif, K., Bioud, N., Lebgaa, N. and Belagraa, L., 2012. Effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide. Pramana79(1), pp.95-106.
[55] Lin, H., Wray, L.A., Xia, Y., Xu, S., Jia, S., Cava, R.J., Bansil, A. and Hasan, M.Z., 2010. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature materials9(7), pp.546-549.
[56] Skaftouros, S., Özdoğan, K., Şaşıoğlu, E. and Galanakis, I., 2013. Generalized Slater-Pauling rule for the inverse Heusler compounds. Physical Review B—Condensed Matter and Materials Physics87(2), p.024420.
[57] Abada, A., Amara, K., Hiadsi, S. and Amrani, B., 2015. First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe. Journal of Magnetism and Magnetic Materials388, pp.59-67.
[58] Benatmane, S.A.A.D.I.Y.A. and Hezil-Ziane, S.A.M.I.R.A., 2024. DFT study of BaKN3 and BaRbN3 Perovskites: Revealing their Mechanical, Optoelectronic, and Magnetic Properties. Revista Cubana de Física41(2), pp.103-112.
[59] Benosmane, W., Benatmane, S., Bentata, R. and Benstaali, W., 2021, June. Calculation of Structural, Electronic and Optical Properties of Double Perovskite Ca2CrNbO6. In Spin (Vol. 11, No. 02, p. 2150012). World Scientific Publishing Company.