Sustainable Gold Nanoparticles Possessed Significant Activity Against Cancer Cell Lines (MCF-7, HeLa, and A549)

Document Type : Original Article

Authors

1 Department of Chemistry, School of Applied and Life Sciences, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, Uttarakhand, India- 248007

2 Department of Chemical Engineering, IISER Bhopal, 462066, Madhya Pradesh, India.

3 Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India-263145.

4 4Department of Chemistry, Tula’s Institute, Uttarakhand Technical University, Dehradun.

5 School of Engineering and Computing, Dev Bhoomi Uttarakhand University, Dehradun.

6 Department of Agriculture, Tula’s Institute, Uttarakhand Technical University, Dehradun

7 Living Water International, NGO, Faith-based, Houston, Taxes, USA.

8 School of applied and Life Science Uttaranchal University

9 School of Agriculture and Technology, Maya Devi University, Dehradun, Uttarakhand, India.

Abstract

Nanoparticles (NPs) have begun substituting for more conventional cancer treatments in contemporary oncology, including radiation, chemotherapy, and surgery. Gold nanoparticles (GNPs) synthesized using Leucas cephalotes (Lc) leaf extract were developed via a green, eco-friendly route and evaluated for their anticancer potential. The formation of Leucas cephalotes–gold nanoparticles (Lc-GNPs) was confirmed by a distinct surface plasmon resonance peak at 524 nm, while XRD analysis revealed four prominent diffraction peaks, indicating their crystalline nature. SEM showed the spherical morphology and interaction of Lc-GNPs against cancer cell lines, and DLS revealed an average particle size of 20 nm with a narrow size distribution. Cytotoxic studies revealed dose-dependent inhibition of cancer cell viability, with IC₅₀ values of 26.91 µg/mL (MCF-7 breast cancer), 45.51 µg/mL (HeLa cervical cancer), and 17.33 µg/mL (A549 lung cancer). Lc-GNPs activity is statistically significant against all three MCF-7, HeLa, and A549 cancer cell lines. Lc-GNPs cancer activity compared with standard chemotherapeutic agents, literature-reported GNPs, and their combination. The Lc-GNPs demonstrated moderate potency but significantly lower expected systemic toxicity. These results indicate that Lc-derived GNPs possess promising, quantifiable anticancer efficacy and can serve as a sustainable nano biocompatible cancer therapeutic. The IC₅₀ values were determined from dose–response curves using nonlinear regression analysis. A549 cells exhibit the lowest viability and the highest cytotoxic response, confirming that Lc-GNPs possess the greatest potency against the A549 lung cancer cell line, followed by MCF-7 cells and HeLa.

Keywords

Main Subjects


© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Smalley, K.S.M. and Herlyn, M., 2006. Towards the targeted therapy of melanoma. Mini reviews in medicinal chemistry6(4), pp.387-393.
[2] Firer, M. A. and Gellerman, G. 2012. Targeted drug delivery for cancer therapy: the other side of antibodies. Journal of hematology & oncology, 5, pp.1-16.
[3] Gowda, R., Jones, N. R., Banerjee, S. and Robertson, G. P. 2013. Use of nanotechnology to develop multi-drug inhibitors for cancer therapy. Journal of nanomedicine & nanotechnology, 4(6), p.184.
[4] Wang, R., Billone, P. S. and Mullett, W. M. 2013. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. Journal of Nanomaterials, 2013(1), p.629681.
[5] McNeil, S. E. 2009. Nanoparticle therapeutics: a personal perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(3), pp.264-271.
[6] Arvizo, R. R., Bhattacharyya, S., Kudgus, R. A., Giri, K., Bhattacharya, R. and Mukherjee, P. 2012. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical Society Reviews, 41(7), pp.2943-2970.
[7] Ali Dheyab, M., Aziz, A. A. and Jameel, M. S. 2021. Recent advances in inorganic nanomaterials synthesis using sonochemistry: a comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles. Molecules26(9), p.2453.
[8] Vinardell, M. P. and Mitjans, M. 2015. Antitumor activities of metal oxide nanoparticles. Nanomaterials, 5(2), pp.1004-1021.
[9] Jagadeeshan, S. and Parsanathan, R. 2021. Metal Oxides as Anticancer Agents. In Metal, Metal Oxides and Metal Sulphides for Biomedical Applications (pp. 281-299). Cham: Springer International Publishing.
[10] Kumar, A., Bisht, G., Siddiqui, N., Masroor, S., Mehtab, S. and Zaidi, M. G. H. 2019. Synthesis of magnetic hydrogels for target delivery of doxorubicin. Advanced Science, Engineering and Medicine, 11(11), pp.1071-1074.
[11] Thevenot, P., Cho, J., Wavhal, D., Nair, A., Timmons, R. B. and Tang, L. 2017. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. In Nanomedicine in Cancer (pp. 411-439). Jenny Stanford Publishing.
[12] Wason, M. S., Colon, J., Das, S., Seal, S., Turkson, J., Zhao, J. and Baker, C. H. 2013. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine: Nanotechnology, Biology and Medicine, 9(4), pp.558-569.
[13] Barabadi, H., Alizadeh, A., Ovais, M., Ahmadi, A., Shinwari, Z. K. and Saravanan, M. 2018. Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta‐analysis. IET nanobiotechnology, 12(4), pp.377-391.
[14] Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. and Wyatt, M. D. 2005. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1(3), pp.325-327.
[15] Joshi, H.C., Kharkwal, H., Kumar, A. and Gupta, P.K., 2023. Development of a quartz crystal microbalance-based immunosensor for the early detection of mesothelin in cancer. Sensors International, 4, p.100248.
[16] Zhu, J. W., Charkhchi, P., Adekunte, S. and Akbari, M. R. 2023. What is known about breast cancer in young women?. Cancers, 15(6), 1917.
[17] Barabadi, H., Alizadeh, A., Ovais, M., Ahmadi, A., Shinwari, Z. K. and Saravanan, M. 2018. Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta‐analysis. IET nanobiotechnology, 12(4), pp.377-391.
[18] Tomar, A. and Garg, G. 2013. Short review on application of gold nanoparticles. Global Journal of Pharmacology, 7(1), pp.34-38.
[19] BarathManiKanth, S., Kalishwaralal, K., Sriram, M., Pandian, S. R. K., Youn, H. S., Eom, S. and Gurunathan, S. 2010. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. Journal of nanobiotechnology, 8, pp.1-15.
[20] Alomari, G., Hamdan, S. and Al-Trad, B. 2021. Gold nanoparticles as a promising treatment for diabetes and its complications: Current and future potentials. Brazilian Journal of Pharmaceutical Sciences, 57, e19040.
[21] Ranjitha, V. R. and Ravishankar Rai, V. 2021. Bioassisted synthesis of gold nanoparticles from Saccharomonospora glauca: toxicity and biocompatibility study. BioNanoScience, 11(2), pp.371-379.
[22] Alhalili, Z. 2023. Metal oxides nanoparticles: general structural description, chemical, physical, and biological synthesis methods, role in pesticides and heavy metal removal through wastewater treatment. Molecules, 28(7), 3086.
[23] Patil, T., Gambhir, R., Vibhute, A. and Tiwari, A. P. 2023. Gold nanoparticles: synthesis methods, functionalization and biological applications. Journal of Cluster Science, 34(2), pp.705-725.
[24] Dikshit, P.K., Kumar, J., Das, A.K., Sadhu, S., Sharma, S., Singh, S., Gupta, P.K. and Kim, B.S., 2021. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts11(8), p.902.
[25] Clarance, P., Luvankar, B., Sales, J., Khusro, A., Agastian, P., Tack, J.C., Al Khulaifi, M.M., Al-Shwaiman, H.A., Elgorban, A.M., Syed, A. and Kim, H.J., 2020. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi Journal of Biological Sciences27(2), pp.706-712.
[26] Bharadwaj, K.K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B.K., Barman, A., Bhattacharjya, D., Srivastava, A., Baishya, D., Edinur, H.A. and Abdul Kari, Z., 2021. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules26(21), p.6389.
[27] Roychoudhury, A. 2020. Yeast-mediated green synthesis of nanoparticles for biological applications. Indian J Pharm Biol Res, 8(03), pp.26-31.
[28] Santhosh, P. B., Genova, J. and Chamati, H. 2022. Green synthesis of gold nanoparticles: An eco-friendly approach. Chemistry, 4(2), pp.345-369.
[29] Brar, K.K., Magdouli, S., Othmani, A., Ghanei, J., Narisetty, V., Sindhu, R., Binod, P., Pugazhendhi, A., Awasthi, M.K. and Pandey, A., 2022. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environmental Research207, p.112202.
[30] Rónavári, A., Igaz, N., Adamecz, D.I., Szerencsés, B., Molnar, C., Kónya, Z., Pfeiffer, I. and Kiricsi, M., 2021. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules26(4), p.844.
[31] Osman, A.I., Zhang, Y., Farghali, M., Rashwan, A.K., Eltaweil, A.S., Abd El-Monaem, E.M., Mohamed, I.M., Badr, M.M., Ihara, I., Rooney, D.W. and Yap, P.S., 2024. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters, 22(2), pp.841-887.
[32] Ahmad, T., Iqbal, J., Bustam, M. A., Irfan, M. and Asghar, H. M. A. 2021. A critical review on phytosynthesis of gold nanoparticles: Issues, challenges and future perspectives. Journal of Cleaner Production, 309, p.127460.
[33] Mikhailova, E. O. 2021. Gold nanoparticles: Biosynthesis and potential of biomedical application. Journal of Functional Biomaterials, 12(4), p.70.
[34] Sargazi, S., Laraib, U., Er, S., Rahdar, A., Hassanisaadi, M., Zafar, M.N., Díez-Pascual, A.M. and Bilal, M., 2022. Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials 2022; 12: 1102 [online]
[35] Dzimitrowicz, A., Berent, S., Motyka, A., Jamroz, P., Kurcbach, K., Sledz, W. and Pohl, P. 2019. Comparison of the characteristics of gold nanoparticles synthesized using aqueous plant extracts and natural plant essential oils of Eucalyptus globulus and Rosmarinus officinalis. Arabian Journal of Chemistry12(8), pp.4795-4805.
[36] Javed, R., Zia, M., Naz, S., Aisida, S.O., Ain, N.U. and Ao, Q., 2020. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 18(1), p.172.
[37] Aljabali, A.A., Obeid, M.A., Bashatwah, R.M., Qnais, E., Gammoh, O., Alqudah, A., Mishra, V., Mishra, Y., Khan, M.A., Parvez, S. and El‐Tanani, M., 2025. Phytochemicals in cancer therapy: a structured review of mechanisms, challenges, and progress in personalized treatment. Chemistry & Biodiversity, 22(8), p.e202402479.
[38] Virmani, I., Sasi, C., Priyadarshini, E., Kumar, R., Sharma, S.K., Singh, G.P., Pachwarya, R.B., Paulraj, R., Barabadi, H., Saravanan, M. and Meena, R., 2020. Comparative anticancer potential of biologically and chemically synthesized gold nanoparticles. Journal of Cluster Science, 31(4), pp.867-876.
[39] Pang, Z., Yan, W., Yang, J., Li, Q., Guo, Y., Zhou, D. and Jiang, X., 2022. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis. ACS nano, 16(10), pp.16019-16037.
[40] Edris, A., Abdelrahman, M., Osman, W., Sherif, A.E., Ashour, A., Garelnabi, E.A., Ibrahim, S.R., Bafail, R., Samman, W.A., Ghazawi, K.F. and Mohamed, G.A., 2023. Design of novel letrozole analogues targeting aromatase for breast cancer: molecular docking, molecular dynamics, and theoretical studies on gold nanoparticles. Metabolites, 13(5), p.583.
[41] Shahidi, M., Abazari, O., Dayati, P., Bakhshi, A., Rasti, A., Haghiralsadat, F., Naghib, S.M. and Tofighi, D., 2022. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment. Nanotechnology Reviews, 11(1), pp.2875-2890.
[42] Utpal, B.K., Bouenni, H., Zehravi, M., Sweilam, S.H., Mortuza, M.R., Arjun, U.V.N.V., Shanmugarajan, T.S., Mahesh, P.G., Roja, P., Dodda, R.K. and Thilagam, E., 2025. Exploring natural products as apoptosis modulators in cancers: Insights into natural product-based therapeutic strategies. Naunyn-Schmiedeberg's Archives of Pharmacology, pp.1-26.
[43] Yin, S., Liu, J., Kang, Y., Lin, Y., Li, D. and Shao, L., 2019. Interactions of nanomaterials with ion channels and related mechanisms. British journal of pharmacology, 176(19), pp.3754-3774.
[44] Wani, A.K., Akhtar, N., Mir, T.U.G., Singh, R., Jha, P.K., Mallik, S.K., Sinha, S., Tripathi, S.K., Jain, A., Jha, A. and Devkota, H.P., 2023. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules, 13(2), p.194.
[45] Rosyidah, A.L., Kerdtoob, S., Yudhistyra, W.I. and Munfadlila, A.W., 2023. Gold nanoparticle-based drug nanocarriers as a targeted drug delivery system platform for cancer therapeutics: a systematic review. Gold Bulletin, 56(3), pp.121-134.
[46] Rajeshkumar, S., Sherif, M.H., Malarkodi, C., Ponnanikajamideen, M., Arasu, M.V., Al-Dhabi, N.A. and Roopan, S.M., 2021. Cytotoxicity behaviour of response surface model optimized gold nanoparticles by utilizing fucoidan extracted from padina tetrastromatica. Journal of Molecular Structure, 1228, p.129440.
[47] Mohan, U.P., Sriram, B., Panneerselvam, T., Devaraj, S., MubarakAli, D., Parasuraman, P., Palanisamy, P., Premanand, A., Arunachalam, S. and Kunjiappan, S., 2020. Utilization of plant-derived Myricetin molecule coupled with ultrasound for the synthesis of gold nanoparticles against breast cancer. Naunyn-Schmiedeberg's Archives of Pharmacology, 393(10), pp.1963-1976.
[48] Devi, L., Gupta, R., Jain, S.K., Singh, S. and Kesharwani, P., 2020. Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of Gemcitabine with natural polysaccharides for treatment of breast cancer. Journal of Drug Delivery Science and Technology, 56, p.101565.
[49] Al-Radadi, N.S., 2021. Green biosynthesis of flaxseed gold nanoparticles (Au-NPs) as potent anti-cancer agent against breast cancer cells. Journal of Saudi Chemical Society, 25(6), p.101243.
[50] Roh, Y.H., Eom, J.Y., Choi, D.G., Moon, J.Y., Shim, M.S. and Bong, K.W., 2021. Gold nanorods-encapsulated thermosensitive drug carriers for NIR light-responsive anticancer therapy. Journal of Industrial and Engineering Chemistry, 98, pp.211-216.
[51] Rahman, M., Khan, J.A., Kanwal, U., Awan, U.A. and Raza, A., 2021. Methotrexate-loaded PEGylated gold nanoparticles as hemocompatible and pH-responsive anticancer drug nanoconjugate. Journal of Nanoparticle Research, 23(8), p.195.
[52] Algotiml, R., Gab-Alla, A., Seoudi, R., Abulreesh, H.H., Ahmad, I. and Elbanna, K., 2022. Anticancer and antimicrobial activity of red sea seaweeds extracts-mediated gold nanoparticles. J Pure Appl Microbiol, 16(1), pp.207-225.
[53] El-Rafie, H.M., El-Aziz, S.M.A. and Zahran, M.K., 2023. In vitro cytotoxicity against breast cancer using biogenically synthesized gold and iron oxide nanoparticles derived from the hydroethanolic extract of Salvia officinalis L. Chemical Papers, 77(1), pp.361-373.
[54] Naveena, A., Jeyasundari, J., Vengatesh, P.P. and Sakthiathithan, A.S., 2023. In-vitro Anticancer Potential of Phytogenic Ag-Au Bimetallic Nanoparticles using Clitoria ternatea Flower Extract. International Journal of Pharmaceutical Sciences and Drug Research, 15(4), pp.432-436.
[55] Salarvand, A., Shanei, A., Hejazi, S.H., Kakhki, N.A., Abharian, P.H. and Najafizade, N., 2024. In Vitro Study of Sonodynamic Therapy Using Gemcitabine-Loaded PEG-Gold Nanoparticles Against MCF-7 Breast Cancer Cells. Bionanoscience, 14(3), pp.2117-2130.
[56] Nosrati-Oskouie, M., Salavatizadeh, M., Aghili-Moghaddam, N.S., Sathyapalan, T., Kesharwani, P., Tarighat-Esfanjani, A. and Sahebkar, A., 2025. Folate-Modified Curcumin-Loaded Nanoparticles for Overcoming Delivery Challenges in Cancer Treatment: A Narrative Review. Current Pharmaceutical Biotechnology, 26(10), pp.1423-1440.
[57] Kadam, A., Patil, R., Mahalunkar, S., Ashokkumar, M., Chauhan, R. and Gosavi, S., 2025. Liquid crystal-based optical platform for the detection of colon and breast cancer cell lines using folic acid-conjugated gold nanoparticles. Sensors & Diagnostics.
[58] Islam, M.M., Kaur, H., Kaur, H., Singh, S.K., Kalita, J., Kumar, A. and Singh, A., 2025. Nanotechnology in Anti-EGFR Treatments: Enhancing Delivery and Minimizing Toxicity in Cancer Therapy. Clinical Cancer Drugs, 11(1), p.E2212697X377694.
[59] Niżnik, Ł., Noga, M., Kobylarz, D., Frydrych, A., Krośniak, A., Kapka-Skrzypczak, L. and Jurowski, K., 2024. Gold nanoparticles (AuNPs)—toxicity, safety and green synthesis: a critical review. International Journal of Molecular Sciences, 25(7), p.4057.
[60] Jayeoye, T.J., Nwude, E.F., Singh, S., Prajapati, B.G., Kapoor, D.U. and Muangsin, N., 2024. Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: a review. BioNanoScience, 14(3), pp.3355-3384.
[61] Cory, A.H., Owen, T.C., Barltrop, J.A. and Cory, J.G., 1991. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer communications, 3(7), pp.207-212.
[62] Riss, T.L., Moravec, R.A., Niles, A.L., Duellman, S., Benink, H.A., Worzella, T.J. and Minor, L., 2016. Cell viability assays. Assay guidance manual [Internet].
[63] Motulsky, H. and Christopoulos, A., 2004. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press.
[64] Ritz, C., Baty, F., Streibig, J.C. and Gerhard, D., 2015. Dose-response analysis using R. PloS one, 10(12), p.e0146021.
[65] Mustafa, D. E., Yang, T., Xuan, Z., Chen, S., Tu, H. and Zhang, A., 2010. Surface plasmon coupling effect of gold nanoparticles with different shape and size on conventional surface plasmon resonance signal. Plasmonics5(3), pp.221-231.
[66] Hong, X. and Hall, E.A., 2012. Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance. Analyst, 137(20), pp.4712-4719.
[67] Andreani, A.S., Zahro, S.U., Vidiawati, A. and Fathoni, A., 2025. Colorimetric Detection of NS1 Antigen Using Functionalized Gold Nanoparticles. Analytical and Bioanalytical Chemistry Research, 12(4), pp.457-472.
[68] Husen, A., 2017. Gold nanoparticles from plant system: synthesis, characterization and their application. In Nanoscience and plant–soil systems (pp. 455-479). Cham: Springer International Publishing.
[69] Fouda, A., Eid, A.M., Guibal, E., Hamza, M.F., Hassan, S.E.D., Alkhalifah, D.H.M. and El-Hossary, D., 2022. Green synthesis of gold nanoparticles by aqueous extract of Zingiber officinale: characterization and insight into antimicrobial, antioxidant, and in vitro cytotoxic activities. Applied Sciences, 12(24), p.12879.
[70] Khandelwal, P., Alam, A., Choksi, A., Chattopadhyay, S. and Poddar, P., 2018. Retention of anticancer activity of curcumin after conjugation with fluorescent gold quantum clusters: An in vitro and in vivo xenograft study. ACS omega, 3(5), pp.4776-4785.
[71] Salarvand, A., Shanei, A., Hejazi, S.H., Abedi, I. and Kakhki, N.A., 2025. In vitro Investigation of radiotherapy along with gemcitabine loaded PEG gold nanoparticles against MCF-7 breast cancer cells. Advanced Biomedical Research, 14(1), p.12.
[72] Majoumouo, M.S., Sharma, J.R., Sibuyi, N.R., Tincho, M.B., Boyom, F.F. and Meyer, M., 2020. Synthesis of biogenic gold nanoparticles from Terminalia mantaly extracts and the evaluation of their in vitro cytotoxic effects in cancer cells. Molecules, 25(19), p.4469.
[73] Pinto, R.J., Lucas, J.M., Morais, M.P., Santos, S.A., Silvestre, A.J., Marques, P.A. and Freire, C.S., 2017. Demystifying the morphology and size control on the biosynthesis of gold nanoparticles using Eucalyptus globulus bark extract. Industrial Crops and Products, 105, pp.83-92.
[74] Selim, M.E. and Hendi, A.A., 2012. Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pacific Journal of Cancer Prevention, 13(4), pp.1617-1620.
[75] Martínez-Torres, A.C., Zarate-Triviño, D.G., Lorenzo-Anota, H.Y., Ávila-Ávila, A., Rodríguez-Abrego, C. and Rodríguez-Padilla, C., 2018. Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production. International journal of nanomedicine, pp.3235-3250.
[76] Jaafar, N.D., Al-Saffar, A.Z. and Yousif, E.A., 2020. Genotoxic and cytotoxic activities of lantadene A-loaded gold nanoparticles (LA-AuNPS) in MCF-7 cell line: an in vitro assessment. International journal of toxicology, 39(5), pp.422-432.
[77] Malik, S., Niazi, M., Khan, M., Rauff, B., Anwar, S., Amin, F. and Hanif, R., 2023. Cytotoxicity study of gold nanoparticle synthesis using Aloe vera, honey, and Gymnema sylvestre leaf extract. ACS omega, 8(7), pp.6325-6336.
[78] Choi, S.Y., Jang, S.H., Park, J., Jeong, S., Park, J.H., Ock, K.S., Lee, K., Yang, S.I., Joo, S.W., Ryu, P.D. and Lee, S.Y., 2012. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells. Journal of Nanoparticle Research, 14(12), p.1234.
[79] Dutta, S., Mitra, S.K., Bir, A., TR, P., Ghosh, A., DUTTA, S. and MITRA, S.K., 2023. Enhancing anti-cancer activity: green synthesis and cytotoxicity evaluation of turmeric-gold nanocapsules on A549 lung cancer cells. Cureus, 15(8).
[80] Heo, D.N., Yang, D.H., Moon, H.J., Lee, J.B., Bae, M.S., Lee, S.C., Lee, W.J., Sun, I.C. and Kwon, I.K., 2012. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials, 33(3), pp.856-866.
[81] Bin-Jumah, M.N., Al-Abdan, M., Al-Basher, G. and Alarifi, S., 2020. Molecular mechanism of cytotoxicity, genotoxicity, and anticancer potential of green gold nanoparticles on human liver normal and cancerous cells. Dose-Response, 18(2), p.1559325820912154.
[82] Chen, Y., Liu, S., Liao, Y., Yang, H., Chen, Z., Hu, Y., Fu, S. and Wu, J., 2023. Albumin-modified gold nanoparticles as novel radiosensitizers for enhancing lung cancer radiotherapy. International Journal of Nanomedicine, pp.1949-1964.
[83] Brown, S.D., Nativo, P., Smith, J.A., Stirling, D., Edwards, P.R., Venugopal, B., Flint, D.J., Plumb, J.A., Graham, D. and Wheate, N.J., 2010. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. Journal of the American Chemical Society, 132(13), pp.4678-4684.
[84] Priya Tharishini, P.S.N.C., Saraswathy, N.C., Smila, K.H., Yuvaraj, D., Chandran, M. and Vivek, P., 2014. Green synthesis of gold nano particles from Cassia auriculata leaf aqueous extract and its cytotoxicity effect on in vitro cell line. Int. J. ChemTech Res, 6(9), pp.4241-4250.
[85] Muddapur, U.M., Alshehri, S., Ghoneim, M.M., Mahnashi, M.H., Alshahrani, M.A., Khan, A.A., Iqubal, S.S., Bahafi, A., More, S.S., Shaikh, I.A. and Mannasaheb, B.A., 2022. Plant-based synthesis of gold nanoparticles and theranostic applications: a review. Molecules, 27(4), p.1391.
[86] Abdulateef, S.A., Raypah, M.E., Omar, A.F., Jafri, M.M., Ahmed, N.M., Kaus, N.H.M., Seeni, A., Mail, M.H., Tabana, Y., Ahmed, M. and Al Rawashdah, S., 2023. Rapid synthesis of bovine serum albumin-conjugated gold nanoparticles using pulsed laser ablation and their anticancer activity on hela cells. Arabian Journal of Chemistry, 16(1), p.104395.
[87] You, B.R., Moon, H.J., Han, Y.H. and Park, W.H., 2010. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food and Chemical Toxicology, 48(5), pp.1334-1340.
[88] Bharadwaj, K.K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B.K., Barman, A., Bhattacharjya, D., Srivastava, A., Baishya, D., Edinur, H.A. and Abdul Kari, Z., 2021. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules, 26(21), p.6389.