Effect of Ba2+ Doping on the Crystal Structure and Optical Band Gap of NdFeO3 Orthoferrite

Document Type : Original Article

Authors

Faculty of Physics, Semnan University P. O. Box 35195-363, Semnan, Iran

Abstract

In this study, neodymium was substituted by divalent barium ion (Ba²⁺) at various concentrations (x = 0, 0.1, 0.2, 0.3, and 0.4) in the neodymium orthoferrite structure, forming the composition Nd₁₋ₓBaₓFeO₃ via the sol–gel method. To evaluate the effects of Ba²⁺ substitution, detailed structural and optical characterizations were conducted at room temperature. The results indicated that, with increasing barium content, the unit cell volume, the average Fe–O–Fe bond length, and the tolerance factor exhibited an increasing trend. In contrast, the orthorhombic strain and the octahedral distortion angle of the FeO₆ decreased progressively with higher Ba²⁺ concentrations. These structural changes suggest a reduction in lattice distortion, indicating a gradual evolution of the crystal symmetry toward a higher-symmetry (tetragonal) phase. Furthermore, optical characterization revealed a significant reduction in the optical band gap, decreasing from 2.15 eV for the NdFeO3 sample to 1.28 eV for the sample with x = 0.4. This reduction can be attributed to modifications in the electronic structure and the enhancement of optical properties induced by Ba²⁺ substitution. These findings highlight the potential of Ba-doped NdFeO₃ for real world applications, including visible light photo-catalysis, gas and chemical sensors, optoelectronic devices, and photo-electrochemical systems.

Keywords

Main Subjects


© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Wu, Z.L., Zhang, R., Zhao, M., Fang, S.M., Han, Z.X., Hu, J.F. and Wang, K.Y., 2012. Effect of Pd doping on the acetone-sensing properties of NdFeO3International Journal of Minerals, Metallurgy, and Materials19(2), pp.141-145.
[2] Li, X.B., Gao, C., Sun, S., Huang, L.L., Zhou, H., Wu, B.X., Zheng, L.H., Kang, X.F., Zhao, Y.X., Wang, F.P. and Zhang, J.B., 2024. Ethanolamine gas sensors based on NdFeO3 modified hexagonal pyramid shaped ZnO nanocrystals. Ceramics International50(15), pp.26311-26324.
[3] Guo, J., Ma, S., Ma, N., Liu, J., Wei, J., Xu, C., Fan, G. and Ni, P., 2024. Hydrothermal synthesis of NdFeO3 nanoparticles and their high gas-sensitive properties. Ceramics International50(21), pp.43654-43664.
[4] Omari, E. and Omari, M., 2022. Enhancing catalytic activity of NdFeO3 perovskite by tuning A-site cation deficiency for oxygen evolution reaction. International Journal of Hydrogen Energy47(32), pp.14542-14551.
[5] Al-Abbad, E.A., Aadil, M., Aldrdery, M., Alkhaldi, N.D., Khalid, A., Alrahili, M.R., Algarni, M., El Jery, A. and El-Aassar, M.R., 2024. Nanostructured codoped neodymium orthoferrite synthesized via the hydrothermal route for photocatalytic annihilation of crystal violet dye. Ceramics International50(24), pp.54943-54954.
[6] Ukorah, I.N., Owolabi, A.J., Ali, H., Onimisi, M.Y., Tafida, R.A., Olalekan, A.J., Gambo, H.M., Usman, S.L., Christiana, A.O., Ukwenya, J.M. and Akinade, B.J., 2024. Investigating the Performance of TIN-Based Perovskite Solar Cell with Zinc Selenide as an ETM and Graphene as an HTM Using SCAPS-1D. Progress in Physics of Applied Materials4(2), pp.171-181.
[7] Warshi, M.K., Mishra, V., Sagdeo, A., Mishra, V., Kumar, R. and Sagdeo, P.R., 2018. Structural, optical and electronic properties of RFeO3Ceramics International44(7), pp.8344-8349.
[8] Rajabi, Y., Gholizadeh, A. and Gorzoddin, M., 2025. Investigating the Nonlinear Optical Behavior of La1-xCaxCo0.5Mg0.5O3 Perovskites. Progress in Physics of Applied Materials5(1), pp.47-62.
[9] Nakhaei, M., Khoshnoud, D.S., Bremholm, M., Nobre, M.A. and Khonakdar, H.A., 2023. Effects of Al doping on physical properties and photocatalytic activity of neodymium orthoferrite. Journal of Sol-Gel Science and Technology105(1), pp.246-265.
[10] Kotnana, G. and Hong, S., 2025. Recent Progress on Rare Earth Orthoferrites for Gas-Sensing Applications. Chemosensors14(5).
[11] Bez, R., Maayoufi, A.E., Bouhmouche, A., Moubah, R. and Mliki, N.T., 2024. Structural, dielectric, optical and electronic properties of NdFeO3: experimental and computational study. Journal of Materials Science: Materials in Electronics35(20), p.1403.
[12] Qamar, F., Sharma, S. and Khan, S., 2024. Effect of Ce3+ ion substitution on the structural, optical, electrical and ferroelectric properties of NdFeO3 nanoparticles. Applied Physics A130(9), p.626.
[13] Li, X.B., Zhou, H., Huang, L.L., Gao, C., Zhang, Q.Q., Wu, B.X., Sun, S. and Wang, A.Q., 2025. Detection of formaldehyde sensitive properties of Sm3+ doped NdFeO3Journal of Alloys and Compounds1010, p.176933.
[14] Kashyap, S.J., Sankannavar, R. and Madhu, G.M., 2022. Insights on the various structural, optical and dielectric characteristics of La1-xcaxFeO3 perovskite-type oxides synthesized through solution-combustion technique. Applied Physics A128(6), p.518.
[15] Nandy, S., Theingi, M., Ghosh, S., Chae, K.H. and Sudakar, C., 2024. Influence of local structure and metal-oxygen hybridization on the electrical and magnetic properties of alkaline earth metal (Mg2+, Ca2+, Sr2+) substituted LaFeO3 ceramics. Journal of Applied Physics136(10).
[16] Wang, M., Cheng, L., Huang, L., Pan, S., Yao, Q., Hu, C., Liang, Q. and Zhou, H., 2021. Effect of Sr doped the YFeO3 rare earth ortho-ferrite on structure, magnetic properties, and microwave absorption performance. Ceramics International47(24), pp.34159-34169.
[17] Ali, S.A., Naseem, S., Khan, W. and Nambissan, P.M.G., 2019, December. Alkaline earth cation substitution effects in LaFeO3 OrthoFerrite nanocrystals studied by positron annihilation. In AIP Conference Proceedings (Vol. 2182, No. 1, p. 050028). AIP Publishing LLC.
[18] Nakhaei, M. and Khoshnoud, D.S., 2019. Influence of particle size and lattice distortion on magnetic and dielectric properties of NdFeO3 orthoferrite. Physica B: Condensed Matter553, pp.53-58.
[19] Berezhnaya, M.V., Perov, N.S., Almjasheva, O.V., Mittova, V.O., Nguyen, A.T., Mittova, I.Y., Druzhinina, L.V. and Alekhina, Y.A., 2019. Synthesis and magnetic properties of barium-doped nanocrystal lanthanum orthoferrite. Russian Journal of General Chemistry89(3), pp.480-485.
[20] Makhdoom, A.R., Shah, S.M., Mahmood, T., Iqbal, M.J., Akhtar, M.J. and Rafiq, M.A., 2019. Enhancement of ferromagnetism by suppression of spiral spin structure in Ba doped BiFeO3Journal of Magnetism and Magnetic Materials484, pp.286-290.
[21] Hait, S., Ghose, S. and Mandal, K., 2020. Effect of Ba and Y co-doping on the structural and magneto-electric properties of BiFeO3 ceramic. Journal of Alloys and Compounds822, p.153614.
[22] Dehno, R.T. and Khoshnoud, D.S., 2022. Multiferroic properties in Sm1-xErxFeO3 ceramics. Journal of Magnetism and Magnetic Materials541, p.168515.
[23] Pourjafar, M. and Khoshnoud, D.S., 2025. A comparative study on effects of magnesium substitution at Nd and Fe-sites on the structural, optical, magnetic, and dielectric properties of neodymium orthoferrite. Results in Physics, p.108496.
[24] Ghasemi, E. and Khoshnoud, D.S., 2025. The effect of Mg doping on spin reorientation transition and physical properties of SmFeO3Journal of Materials Science: Materials in Electronics36(5), p.304.
[25] Nakhaei, M., Nobre, M.A., Khoshnoud, D.S., Bremholm, M. and Khonakdar, H.A., 2025. Chemical synthesis, structural and magnetic properties of Al-doped neodymium orthoferrite. Journal of Alloys and Compounds1010, p.176987. [26] Gao, X., Ji, Y., Wang, M. and Liang, Q., 2024. Effect of Ba substitution on structure, magnetic properties and microwave properties of NdFeO3Materials Today Communications38, p.108264.
[27] Kumar, D., Yadav, S., Singh, C.B., Yadav, R.S., Rai, S.B. and Singh, A.K., 2023. Impact of Sr2+ doping on the structural, dielectric, ferroelectric and optical properties of YFeO3 perovskite phosphor. Journal of Alloys and Compounds945, p.169286.
[28] Muneeswaran, M., Jang, J.W., Jeong, J.H., Akbari-Fakhrabadi, A. and Giridharan, N.V., 2019. Effect of dopant-induced defects on structural, electrical, and enhanced ferromagnetism and magnetoelectric properties of Dy and Sr co-doped BiFeO3Journal of Materials Science: Materials in Electronics30(8), pp.7359-7366.
[29] Arabi, A., Fazli, M. and Ehsani, M.H., 2022. Photocatalytic activity of the La0.7Ca0.3MnO3 nanorods. Progress in Physics of Applied Materials2(2), pp.123-131.
[30] Abdullah, B.J., 2022. Size effect of band gap in semiconductor nanocrystals and nanostructures from density functional theory within HSE06. Materials Science in Semiconductor Processing137, p.106214.
[31] Singh, M., Goyal, M. and Devlal, K., 2018. Size and shape effects on the band gap of semiconductor compound nanomaterials. Journal of Taibah University for Science12(4), pp.470-475.
[32] Mishra, S., Pandey, B.K., Jaiswal, R.L. and Gupta, J., 2024. Unified model for the studies of band gap of nanosolids with their varying shape and size. Chemical Physics Letters841, p.141177.
[33] Duyen, P.T.H., Diem, C.H. and Tien, N.A., 2022. Cd-doped NdFeO3 nanoparticles: synthesis and optical properties study. Journal of Materials Science: Materials in Electronics33(7), pp.3546-3555.
[34] Chung, N.T.K., Tien, N.A., Diem, C.H. and Vuong, B.X., 2022. Structural and optical properties of Sr-doped NdFeO3 nanoparticles prepared by a simple co-precipitation method. Journal of Chemical Sciences134(1), p.34.
[35] Liang, N., Wang, C., Yao, X., Wang, X., Yan, T., Wang, R., Jin, Q., Guo, X., Guo, E., Ge, C. and He, M., 2024. Structure evolution and energy band modulation in Ba-doped BiFeO3 thin films. Journal of Applied Physics135(4).
[36] Srinatha, N., Reddy, S.S., Al-Dossari, M., Gurushantha, K., Abd EL-Gawaad, N.S., Manjunatha, S.O., Kumar, K.R., Kumar, M.S., Tangod, V.B. and Madhu, A., 2024. Effect of aliovalent substitution in the band structure engineered Ca2+-doped LaFeO3 nanoparticles for visible light-induced photocatalytic studies. Ceramics International50(1), pp.1836-1848.