[1] Agarwal, B.K. and Verma, L.P., 1970. A rule for chemical shifts of X-ray absorption edges. Journal of Physics C: Solid State Physics, 3(3), p.535.
[2] Pan, J., Gao, B., Guo, K., Gao, Y., Xu, X. and Yue, Q., 2022. Insights into selective adsorption mechanism of copper and zinc ions onto biogas residue-based adsorbent: Theoretical calculation and electronegativity difference. Science of the Total Environment, 805, p.150413.
[3] Singh, V.P., Singh, S., Singh, D.P., Singh, P., Tiwari, K., Mishra, M. and Butcher, R.J., 2013. Synthesis, spectral and single crystal X-ray diffraction studies on Co (II), Ni (II), Cu (II) and Zn (II) complexes with o-amino acetophenone benzoyl hydrazone. Polyhedron, 56, pp.71-81.
[4] Kawata, S. and Maeda, K., 1973. Effects of chemical combination on the X-ray LIII absorption limits of Mo, Rh, Pd, Ag and Cd. Journal of Physics F: Metal Physics, 3(1), p.167.
[5] Salem, S.I., Chang, C.N., Lee, P.L. and Severson, V., 1978. Energy shift of the K-absorption edge of Mn and Fe compounds. Journal of Physics C: Solid State Physics, 11(19), p.4085.
[6] Joseph, D., Basu, S., Jha, S.N. and Bhattacharyya, D., 2012. Chemical shifts of K X-ray absorption edges on copper in different compounds by X-ray absorption spectroscopy (XAS) with synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 274, pp.126–128.
[7] Joseph, D. and Patra, N., 2017. Chemical shift at the X-ray K-absorption edge of Zn in some Zn compounds. Madridge Journal of Analytical Sciences and Instrumentation, 2(1), pp.25–27.
[8] Rudolph, J. and Jacob, C.R., 2018. Revisiting the dependence of Cu K-edge X-ray absorption spectra on oxidation state and coordination environment. Inorganic Chemistry, 57(17), pp.10591–10607.
[9] Batail, P., 2004. Introduction: molecular metals. Chemical Reviews, 104(11), pp.4887–4890.
[10] Pendharkar, A.V. and Mande, C., 1973. Fine structure of the rhenium LIII absorption discontinuity. Physica, 66(1), pp.204–210.
[11] Tzeng, C.T., Lo, W.S., Yuh, J.Y., Chu, R.Y. and Tsuei, K.D., 2000. Photoemission, near-edge X-ray absorption spectroscopy, and low-energy electron-diffraction study of C₆₀ on Au (111) surfaces. Physical Review B, 61(3), p.2263.
[12] Solomon, E.I., Hedman, B., Hodgson, K.O., Dey, A. and Szilagyi, R.K., 2005. Ligand K-edge X-ray absorption spectroscopy: covalency of ligand–metal bonds. Coordination Chemistry Reviews, 249(1–2), pp.97–129.
[13] Ma, Q., Prater, J.T., Sudakar, C., Rosenberg, R.A. and Narayan, J., 2012. Defects in room-temperature ferromagnetic Cu-doped ZnO films probed by X-ray absorption spectroscopy. Journal of Physics: Condensed Matter, 24(30), 306002.
[14] Zhao, W., Wen, L., Parkin, I.P., Zhao, X. and Liu, B., 2023. Fermi-level shift, electron separation, and plasmon resonance change in Ag nanoparticle-decorated TiO₂ under UV light illumination. Physical Chemistry Chemical Physics, 25(29), pp.20134–20144.
[15] Dekker, A.J., 2017. Solid State Physics. Macmillan Indian Ltd.
[16] Pines, D., 2018. Elementary Excitations in Solids. CRC Press.
[17] Elzinga, E.J. and Reeder, R.J., 2002. X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: Implications for site-specific metal incorporation preferences during calcite crystal growth. Geochimica et Cosmochimica Acta, 66(22), pp.3943-3954.
[18] Minamimoto, H., Yasuda, K., Zhou, R., Li, X., Yasuda, S. and Murakoshi, K., 2020. Potential energy shift of the Fermi level at plasmonic structures for light-energy conversion determined by graphene-based Raman measurements. The Journal of Chemical Physics, 152(12).
[19] Saxena, N.N., Gupta, S.N. and Anihindi, R.G., 1974. Chemical shift of zinc K-absorption edge in some compounds. Journal of Physics and Chemistry of Solids, 35(10), pp.1451–1452.
[20] Zhao, X.Z., Jiang, T., Wang, L., Yang, H., Zhang, S. and Zhou, P., 2010. Interaction of curcumin with Zn (II) and Cu (II) ions based on experiment and theoretical calculation. Journal of Molecular Structure, 984(1-3), pp.316-325.
[21] Verma, L.P. and Agarwal, B.K., 1968. Shifts in the X-ray K-absorption edge of copper due to chemical effects. Journal of Physics C: Solid State Physics, 1(6), p.1658.
[22] Li, Y. and Korzhavyi, P.A., 2017. Physical and chemical properties of Cu (I) compounds with O and/or H. Dalton Transactions, 46(2), pp.529-538.
[23] Rößler, N. and Staemmler, V., 2003. Ab initio calculations for the 2s and 2p core level binding energies of atomic Zn, Zn metal, and Zn-containing molecules. Physical Chemistry Chemical Physics, 5(17), pp.3580-3586.
[24] Morton, S.M., Silverstein, D.W. and Jensen, L., 2011. Theoretical studies of plasmonics using electronic structure methods. Chemical reviews, 111(6), pp.3962-3994.
[25] Halas, N.J., Lal, S., Chang, W.S., Link, S. and Nordlander, P., 2011. Plasmons in strongly coupled metallic nanostructures. Chemical reviews, 111(6), pp.3913-3961.
[26] Srivastava, K.S., Singh, S., Gupta, P., Srivastava, A.K., Kumar, V., Husain, M. and Prasad, M.K., 1981. X-ray K-absorption edge shifts due to chemical combination. Pramana, 17(2), pp.187-192.
[27] Akbari-Moghanjoughi, M., 2023. Energy Band Structure of Relativistic Quantum Plasmon Excitation. arXiv preprint arXiv:2303.04881.
[27] Baker, M.L., Mara, M.W., Yan, J.J., Hodgson, K.O., Hedman, B. and Solomon, E.I., 2017. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coordination Chemistry Reviews, 345, pp.182–208.
[28] Saxena, N.N., Gupta, S.N. and Anihindi, R.G., 1974. Chemical shift of zinc K-absorption edge in some compounds. Journal of Physics and Chemistry of Solids, 35(10), pp.1451–1452.
[29] Verma, L.P. and Agarwal, B.K., 1968. Shifts in the X-ray K-absorption edge of copper due to chemical effects. Journal of Physics C: Solid State Physics, 1(6), p.1658.
[30] Paterson, P.J.K. and Leckey, R.C.G., 1974. Characteristic energy losses in zinc and cadmium. Journal of Physics F: Metal Physics, 4(6), L156.
[31] Velu, S., Suzuki, K., Vijayaraj, M., Barman, S. and Gopinath, C.S., 2005. In situ XPS investigations of Cu₁₋ₓNiₓZnAl mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B: Environmental, 55(4), pp.287–299.
[32] Krishchenko, I.M., Manoilov, É.G., Kravchenko, S.A. and Snopok, B.A., 2020. Resonant optical phenomena in heterogeneous plasmon nanostructures of noble metals: a review. Theoretical and Experimental Chemistry, 56(2), pp.67-110.
[33] Huang, H.B., Yu, K., Zhang, N., Xu, J.Y., Yu, X.T., Liu, H.X., Cao, H.L., Lü, J. and Cao, R., 2020. Localized surface plasmon resonance enhanced visible-light-driven CO2 photoreduction in Cu nanoparticle loaded ZnInS solid solutions. Nanoscale, 12(28), pp.15169-15174.
[34] Jian, C.C., Zhang, J. and Ma, X., 2020. Cu–Ag alloy for engineering properties and applications based on the LSPR of metal nanoparticles. RSC advances, 10(22), pp.13277-13285.
[35] Leon, D.A., Cardoso, C. and Berland, K., 2025. Bulk plasmons in elemental metals. arXiv preprint arXiv:2510.07261.
[36] Raether, H. (2006). Excitation of plasmons and interband transitions by electrons. Springer, Berlin, pp. 23–34.
[37] Vehse, R.C. and Arakawa, E.T., 1969. Optical and photoemissive properties of nickel in the vacuum-ultraviolet spectral region. Physical Review, 180(3), 695–705.
[38] Philipp, H.R. and Ehrenreich, H., 1963. Optical properties of semimetals. Physical Review, 129(4), 1550–1560.
[39] Tomaev, V.V., Polishchuk, V.A., Vartanyan, T.A. and Vasil’ev, E.A., 2019. Surface plasmon resonance in zinc nanoparticles. Glass Physics and Chemistry, 45, 238–241.
[40] Amekura, H., Shinotsuka, H. and Yoshikawa, H., 2017. Are the triple surface plasmon resonances in Zn nanoparticles true? Nanotechnology, 28(49), 495712.
[41] Derkachova, A., Kolwas, K. and Demchenko, I., 2016. Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics, 11, pp.941–951.
[42] Saxena, N.N., Gupta, S.N. and Anihindi, R.G., 1974. Chemical shift of zinc K-absorption edge in some compounds. Journal of Physics and Chemistry of Solids, 35(10), pp.1451–1452.
[43] Verma, L.P. and Agarwal, B.K., 1968. Shifts in the X-ray K-absorption edge of copper due to chemical effects. Journal of Physics C: Solid State Physics, 1(6), p.1658.
[44] Chaboy, J., Muñoz-Páez, A., Carrera, F., Merkling, P. and Marcos, E.S., 2005. Ab initio X-ray absorption study of copper K-edge XANES spectra in Cu(II) compounds. Physical Review B, 71(13), 134208.
[45] Levlev, V.M. and Shvedov, E.V., 2018. Physics of the Solid State, 44(3), 144–149.
[46] Matsumoto, Y., Katayama, M., Abe, T., Ohsawa, T., Ohkubo, I., Kumigashira, H. and Koinuma, H., 2010. Chemical trend of Fermi-level shift in transition metal-doped TiO₂ films. Journal of the Ceramic Society of Japan, 118(1383), pp.993–996
[47] Lourenço, M.A., Zeng, J., Jagdale, P., Castellino, M., Sacco, A., Farkhondehfal, M.A. and Pirri, C.F., 2021. Biochar/zinc oxide composites as effective catalysts for electrochemical CO₂ reduction. ACS Sustainable Chemistry & Engineering, 9(15), pp.5445–5453.
[48] Gorai, S.K. and Mahto, P., 2013. Correlation between ground state properties and plasmon energy of ternary chalcopyrite semimetals. IOSR Journal of Applied Physics, 3, pp.19–23.
[49] Link, S. and El-Sayed, M.A., 1999. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212–4217.
[50] Brouder, C., Alouani, M. and Arnaud, B., 2004. Electronic structure and X-ray absorption edges of Cu and Zn compounds: Relation to plasmonic and charge-transfer effects. Physical Review B, 70, 045119.
[51] Stebunov, Y.V., Yakubovsky, D.I., Fedyanin, D.Y., Arsenin, A.V. and Volkov, V.S., 2018. Superior sensitivity of copper-based plasmonic biosensors. Langmuir, 34(15), pp.4681–4687.
[52] Stern, E.A. and Ferrell, R.A., 1960. Surface plasma oscillations of a degenerate electron gas. Physical Review, 120(1), pp.130.
[53] Lal, S., Link, S. and Halas, N.J., 2007. Nano-optics from sensing to waveguiding. Nature Photonics, 1(11), pp.641–648.
[54] Geetha, P.P., Ramachandran, A. and Nair, S.S., 2020. Tuning of localized surface plasmon resonance in copper–copper oxide core–shell quantum dots for biosensor applications.
[55] Cortez-Valadez, M., Bocarando-Chacon, J.G., Hernández-Martínez, A.R., Hurtado, R.B., Alvarez, R.A., Roman-Zamorano, J.F. and Flores-Acosta, M., 2014. Optical properties and radial breathing modes present in Cu amorphous quantum dots obtained by green synthesis. Nanoscience and Nanotechnology Letters, 6(7), pp.580–583.
[56] Indhu, A.R., Dharanya, C. and Dharmalingam, G., 2024. Plasmonic copper: ways and means of achieving, directing, and utilizing surface plasmons. Plasmonics, 19(3), pp.1303-1357.
[57] Pillai, A.M., Nair, N., Das, M.K. and Ram, S.K., 2025. Strategic approaches to enhance efficiency and commercial feasibility of copper-based surface plasmon resonance sensing. Next Materials, 7, p.100377.
[58] Park, B.K., Jeong, S., Kim, D., Moon, J., Lim, S. and Kim, J.S., 2007. Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science, 311(2), pp.417–424.
[59] Devasenathipathy, R., Wu, D.Y. and Tian, Z.Q., 2019. Surface plasmon enhanced chemical reactions on metal nanostructures. In: Nanoplasmonics. IntechOpen
[60] Martínez-Ruiz, A., Moreno, M.G. and Takeuchi, N., 2003. First-principles calculations of the electronic properties of bulk Cu₂O, clean and doped with Ag, Ni, and Zn. Solid State Sciences, 5(2), pp.291–295.
[61] Liu, J., Jalali, M., Mahshid, S. and Wachsmann-Hogiu, S., 2020. Are plasmonic optical biosensors ready for use in point-of-need applications?. Analyst, 145(2), pp.364-384.
[62] Reddy, K.R., Hassan, M. and Gomes, V.G., 2015. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Applied Catalysis A: General, 489, 1–16.
[63] Hutter, E. and Fendler, J.H., 2004. Exploitation of localized surface plasmon resonance. Advanced Materials, 16(19), 1685–1706.
[64] Jiang, Q., Ji, C., Riley, D.J. and Xie, F., 2018. Boosting the efficiency of photoelectrolysis by the addition of non-noble plasmonic metals: Al and Cu. Nanomaterials, 9(1), p.1.
[65] Tomaev, V.V., Polishchuk, V.A., Vartanyan, T.A. and Vasil’ev, E.A., 2019. Surface plasmon resonance in zinc nanoparticles. Glass Physics and Chemistry, 45, pp.238–241.
[66] Ievlev, V.M. and Shvedov, E.V., 2006. Kinetics of formation of discrete nanostructures during vacuum condensation from a single-component vapor. Physics of the Solid State, 48(1), pp.144-149.
[67] Amekura, H., Shinotsuka, H. and Yoshikawa, H., 2017. Are the triple surface plasmon resonances in Zn nanoparticles true? Nanotechnology, 28(49), 495712.
[68] Rajamanickam, U., Mylsamy, P., Viswanathan, S. and Muthusamy, P., 2012. Biosynthesis of zinc nanoparticles using actinomycetes for antibacterial food packaging. In: International Conference on Nutrition and Food Sciences IPCBEE, Vol. 39.
[69] Singh, S.C. and Gopal, R., 2007. Zinc nanoparticles in solution by laser ablation technique. Bulletin of Materials Science, 30, pp.291–293.