Impact of the Single-Layer Anti-Reflective Coating (Slarc) on the Photovoltaic Properties of ZnO/AlGaAs/Si Solar Cells

Document Type : Original Article

Authors

1 School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, MALAYSIA

2 Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, MALAYSIA

3 GammaIntellect LLC, 2111 Violeta Cir SE, Rio Rancho, NM 87124, USA

4 UiTM Foundation Centre, Universiti Teknologi MARA, Dengkil Campus, Selangor 43800, MALAYSIA

Abstract

A triple heterojunction solar cell is reported to achieve high efficiency with appropriate parameters. In this study, a zinc oxide/aluminium gallium arsenide/silicon (ZnO/AlGaAs/Si) solar cell was incorporated into a new triple heterojunction solar cell design to investigate the performance of the solar cell. Furthermore, applying an anti-reflective coating (ARC) on top of the cell can enhance its performance by reducing light reflectance. In this work, silicon dioxide, ZnO, and silicon nitride were selected as materials for a single-layer anti-reflective coating (SLARC). The thickness and refractive index values for each material were calculated to determine the optimum values for wavelengths between 250 and 1,200 nm. The device was analyzed using a personal computer 1-dimensional simulation under AM1.5G conditions at one-sun illumination. The reflectance of Si3N4 was higher than that of the cell without ARC. Moreover, Si3N4 only achieved lower reflectance than the other materials over a narrow wavelength of approximately 300 nm. The cell efficiency increased from 21.98% to 24.08% after applying an SLARC using silicon dioxide.

Keywords

Main Subjects


© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1]     Ahmed, S., Ali, A., Ansari, J.A., Qadir, S.A. and Kumar, L., 2025. A Comprehensive Review of Solar Photovoltaic Systems: Scope, Technologies, Applications, Progress, Challenges and Recommendations. IEEE Access.
[2]     Maka, A.O. and Alabid, J.M., 2022. Solar energy technology and its roles in sustainable development. Clean Energy6(3), pp.476-483.
[3]    Ji, C., Liu, W., Bao, Y., Chen, X., Yang, G., Wei, B., Yang, F. and Wang, X., 2022, November. Recent applications of antireflection coatings in solar cells. In Photonics (Vol. 9, No. 12, p. 906). MDPI.
[4]   Dambhare, M.V., Butey, B. and Moharil, S.V., 2021, May. Solar photovoltaic technology: A review of different types of solar cells and its future trends. In Journal of Physics: Conference Series (Vol. 1913, No. 1, p. 012053). IOP Publishing.
[5]   Roy, A.B. and Powell, R., 2023, April. Enhancement the efficiency of thin AlGaAs based multi-junction Silicon solar cells through doping and thickness profile optimization. In 2023 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI) (pp. 1-6). IEEE.
[6]    Raisa, A.T., Sakib, S.N., Hossain, M.J., Rocky, K.A. and Kowsar, A., 2025. Advances in multijunction solar cells: an overview. Solar Energy Advances, p.100105.
[7]   Sathya P., & Supriya P., 2017. 2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS): August 10th, 11th and 12th 2017. IEEE.
[8]  Dimroth, F., Müller, R., Predan, F., Siefer, G., Schygulla, P., Benick, J., Höhn, O., Hermle, M., Lackner, D., Beutel, P. and Hauser, H., 2020, June. 34.1% Efficient GaInP/AlGaAs//Si Tandem Cell. In 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (pp. 1543-1546). IEEE.
[9]  Jin, X. and Tang, N., 2021. ZnO as an anti-reflective layer for GaAs based heterojunction solar cell. Materials Research Express8(1), p.016412.
[10] Boudour, S., Bouchama, I., Hadjab, M. and Laidoudi, S., 2019. Optimization of defected ZnO/Si/Cu2O heterostructure solar cell. Optical Materials98, p.109433.
[11] Zhang, W. and Tang, N., 2020. Comparative study of ZnMgO/GaAs and ZnMgO/Si solar cells. Materials Research Express7(10), p.105903.
[12] Devendra, K.C., Wagle, R., Gaib, R., Shrivastava, A. and Mishra, L.N., 2020. Modelling and simulation of AlGaAs/GaAs solar cell. Am. J. Eng. Res9, pp.218-223.
[13] Friedman, D.J., 2010. Progress and challenges for next-generation high-efficiency multijunction solar cells. Current Opinion in Solid State and Materials Science14(6), pp.131-138.
[14] Moayedfar, M. and Assadi, M.K., 2018. Various types of anti-reflective coatings (ARCS) based on the layer composition and surface topography: a review. Reviews on Advanced Materials Science53(2), pp.187-205.
[15] Hashmi, G., Rashid, M.J., Mahmood, Z.H., Hoq, M. and Rahman, M.H., 2018. Investigation of the impact of different ARC layers using PC1D simulation: application to crystalline silicon solar cells. Journal of Theoretical and Applied Physics12(4), pp.327-334.
[16] Diop, M.M., Diaw, A., Mbengue, N., Ba, O., Diagne, M., Niasse, O.A., Ba, B. and Sarr, J., 2018. Optimization and modeling of antireflective layers for silicon solar cells: in search of optimal materials. Materials Sciences and Applications9(08), p.705.
[17] Sharma, D.K. and Purohit, G., 2014, November. Analysis of the effect of fill factor on the efficiency of solar PV system for improved design of MPPT. In 6th world conference on photo voltaic energy conversion.
[18] Mandong, A.M. and Üzüm, A., 2019. Analysis of silicon solar cell device parameters using pc1d. Sakarya University Journal of Science23(6), pp.1190-1197.
[19] Sugiura, T. and Nakano, N., 2023. Numerical simulation approaches of crystalline‐Si photovoltaics. Energy Science & Engineering11(10), pp.3888-3906.
[20] Belarbi, M., Benyoucef, A. and Benyoucef, B., 2014. Simulation of the solar cells with PC1D, application to cells based on silicon. Advanced Energy: An International Journal (AEIJ)1(3).
[21]  Jamaluddin, N.I.I.M., Yusoff, M.Z.B.M., Hussain, B. and Malek, M.F., 2025. Design and simulation of different anti-reflection coatings (ARCs) to improve the efficiency of ZnO solar cells. Journal of Optics54(3), pp.826-840.
[22] Choe, K.S., 2020. Simulation on optimum doping levels in Si solar cells. Korean Journal of Materials Research30(10), pp.509-514.
[23] Naim, H., Shah, D.K., Bouadi, A., Siddiqui, M.R., Akhtar, M.S. and Kim, C.Y., 2022. An in-depth optimization of thickness of base and emitter of ZnO/Si heterojunction-based crystalline silicon solar cell: A simulation method. Journal of Electronic Materials51(2), pp.586-593.
[24] Chandran, I., Subash, T.D., Batumalay, M., 2023. Simulation and Optimization of ZnO/CuO/Cds Solar Cell Using SCAPS. NanoWorld J, 9(5), pp.97-100.
[25]  Xiong, K., Mi, H., Chang, T.H., Liu, D., Xia, Z., Wu, M.Y., Yin, X., Gong, S., Zhou, W., Shin, J.C. and Li, X., 2018. AlGaAs/Si dual‐junction tandem solar cells by epitaxial lift‐off and print‐transfer‐assisted direct bonding. Energy Science & Engineering6(1), pp.47-55.
[26] Olayiwola, T.N., Hyun, S.H. and Choi, S.J., 2024. Photovoltaic modeling: a comprehensive analysis of the I–V characteristic curve. Sustainability16(1), p.432.
[27]  Lennie, A., Abdullah, H., Shaari, S. and Sopian, K., 2009. Fabrication of Single Layer SiO 2 and Si 3 N 4 as Antireflection Coating on Silicon Solar Cell Using Silvaco Software. American Journal of Applied Sciences6(12), p.2043.
[28] Kanmaz, İ., 2024. Theoretical analysis and simulation of SiO2 and ZrO2 based antireflective coatings to improve crystalline silicon solar cell efficiency. Sakarya University Journal of Science28(3), pp.542-549.
[29] James, U.E., Dim, C.C., Akinyemi, M.L. and Ogunrinola, I.E., 2024, May. Theoretical Study of Quantum Efficiency and Spectral Response of Solar Cells. In IOP Conference Series: Earth and Environmental Science (Vol. 1342, No. 1, p. 012043). IOP Publishing.