[1] Ahmed, S., Ali, A., Ansari, J.A., Qadir, S.A. and Kumar, L., 2025. A Comprehensive Review of Solar Photovoltaic Systems: Scope, Technologies, Applications, Progress, Challenges and Recommendations. IEEE Access.
[2] Maka, A.O. and Alabid, J.M., 2022. Solar energy technology and its roles in sustainable development. Clean Energy, 6(3), pp.476-483.
[3] Ji, C., Liu, W., Bao, Y., Chen, X., Yang, G., Wei, B., Yang, F. and Wang, X., 2022, November. Recent applications of antireflection coatings in solar cells. In Photonics (Vol. 9, No. 12, p. 906). MDPI.
[4] Dambhare, M.V., Butey, B. and Moharil, S.V., 2021, May. Solar photovoltaic technology: A review of different types of solar cells and its future trends. In Journal of Physics: Conference Series (Vol. 1913, No. 1, p. 012053). IOP Publishing.
[5] Roy, A.B. and Powell, R., 2023, April. Enhancement the efficiency of thin AlGaAs based multi-junction Silicon solar cells through doping and thickness profile optimization. In 2023 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI) (pp. 1-6). IEEE.
[6] Raisa, A.T., Sakib, S.N., Hossain, M.J., Rocky, K.A. and Kowsar, A., 2025. Advances in multijunction solar cells: an overview. Solar Energy Advances, p.100105.
[7] Sathya P., & Supriya P., 2017. 2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS): August 10th, 11th and 12th 2017. IEEE.
[8] Dimroth, F., Müller, R., Predan, F., Siefer, G., Schygulla, P., Benick, J., Höhn, O., Hermle, M., Lackner, D., Beutel, P. and Hauser, H., 2020, June. 34.1% Efficient GaInP/AlGaAs//Si Tandem Cell. In 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (pp. 1543-1546). IEEE.
[9] Jin, X. and Tang, N., 2021. ZnO as an anti-reflective layer for GaAs based heterojunction solar cell. Materials Research Express, 8(1), p.016412.
[10] Boudour, S., Bouchama, I., Hadjab, M. and Laidoudi, S., 2019. Optimization of defected ZnO/Si/Cu2O heterostructure solar cell. Optical Materials, 98, p.109433.
[11] Zhang, W. and Tang, N., 2020. Comparative study of ZnMgO/GaAs and ZnMgO/Si solar cells. Materials Research Express, 7(10), p.105903.
[12] Devendra, K.C., Wagle, R., Gaib, R., Shrivastava, A. and Mishra, L.N., 2020. Modelling and simulation of AlGaAs/GaAs solar cell. Am. J. Eng. Res, 9, pp.218-223.
[13] Friedman, D.J., 2010. Progress and challenges for next-generation high-efficiency multijunction solar cells. Current Opinion in Solid State and Materials Science, 14(6), pp.131-138.
[14] Moayedfar, M. and Assadi, M.K., 2018. Various types of anti-reflective coatings (ARCS) based on the layer composition and surface topography: a review. Reviews on Advanced Materials Science, 53(2), pp.187-205.
[15] Hashmi, G., Rashid, M.J., Mahmood, Z.H., Hoq, M. and Rahman, M.H., 2018. Investigation of the impact of different ARC layers using PC1D simulation: application to crystalline silicon solar cells. Journal of Theoretical and Applied Physics, 12(4), pp.327-334.
[16] Diop, M.M., Diaw, A., Mbengue, N., Ba, O., Diagne, M., Niasse, O.A., Ba, B. and Sarr, J., 2018. Optimization and modeling of antireflective layers for silicon solar cells: in search of optimal materials. Materials Sciences and Applications, 9(08), p.705.
[17] Sharma, D.K. and Purohit, G., 2014, November. Analysis of the effect of fill factor on the efficiency of solar PV system for improved design of MPPT. In 6th world conference on photo voltaic energy conversion.
[18] Mandong, A.M. and Üzüm, A., 2019. Analysis of silicon solar cell device parameters using pc1d. Sakarya University Journal of Science, 23(6), pp.1190-1197.
[19] Sugiura, T. and Nakano, N., 2023. Numerical simulation approaches of crystalline‐Si photovoltaics. Energy Science & Engineering, 11(10), pp.3888-3906.
[20] Belarbi, M., Benyoucef, A. and Benyoucef, B., 2014. Simulation of the solar cells with PC1D, application to cells based on silicon. Advanced Energy: An International Journal (AEIJ), 1(3).
[21] Jamaluddin, N.I.I.M., Yusoff, M.Z.B.M., Hussain, B. and Malek, M.F., 2025. Design and simulation of different anti-reflection coatings (ARCs) to improve the efficiency of ZnO solar cells. Journal of Optics, 54(3), pp.826-840.
[22] Choe, K.S., 2020. Simulation on optimum doping levels in Si solar cells. Korean Journal of Materials Research, 30(10), pp.509-514.
[23] Naim, H., Shah, D.K., Bouadi, A., Siddiqui, M.R., Akhtar, M.S. and Kim, C.Y., 2022. An in-depth optimization of thickness of base and emitter of ZnO/Si heterojunction-based crystalline silicon solar cell: A simulation method. Journal of Electronic Materials, 51(2), pp.586-593.
[24] Chandran, I., Subash, T.D., Batumalay, M., 2023. Simulation and Optimization of ZnO/CuO/Cds Solar Cell Using SCAPS. NanoWorld J, 9(5), pp.97-100.
[25] Xiong, K., Mi, H., Chang, T.H., Liu, D., Xia, Z., Wu, M.Y., Yin, X., Gong, S., Zhou, W., Shin, J.C. and Li, X., 2018. AlGaAs/Si dual‐junction tandem solar cells by epitaxial lift‐off and print‐transfer‐assisted direct bonding. Energy Science & Engineering, 6(1), pp.47-55.
[26] Olayiwola, T.N., Hyun, S.H. and Choi, S.J., 2024. Photovoltaic modeling: a comprehensive analysis of the I–V characteristic curve. Sustainability, 16(1), p.432.
[27] Lennie, A., Abdullah, H., Shaari, S. and Sopian, K., 2009. Fabrication of Single Layer SiO 2 and Si 3 N 4 as Antireflection Coating on Silicon Solar Cell Using Silvaco Software. American Journal of Applied Sciences, 6(12), p.2043.
[28] Kanmaz, İ., 2024. Theoretical analysis and simulation of SiO2 and ZrO2 based antireflective coatings to improve crystalline silicon solar cell efficiency. Sakarya University Journal of Science, 28(3), pp.542-549.
[29] James, U.E., Dim, C.C., Akinyemi, M.L. and Ogunrinola, I.E., 2024, May. Theoretical Study of Quantum Efficiency and Spectral Response of Solar Cells. In IOP Conference Series: Earth and Environmental Science (Vol. 1342, No. 1, p. 012043). IOP Publishing.