[1] Zahid, M., Touili, S., Mezzane, D., Gouné, M., Uršič, H., Šadl, M., Elamraoui,Y., Hoummada,Kh.,Kutnjak,Z. and El Marssi, M. 2023. Dielectric and energy storage properties of surface-modified BaTi 0.89 Sn 0.11 O3@ polydopamine nanoparticles embedded in a PVDF-HFP matrix. RSC advances, 13(37), pp.26041-26049.
[2] Ciobanu, R. C., Damian, R. F., Schreiner, C. M., Aradoaei, M., Sover, A. and Raichur, A. M. 2023. Simulation of Dielectric Properties of Nanocomposites with Non-Uniform Filler Distribution. Polymers, 15(7), p.1636.
[3] Qiao, X., Zhang, X., Wu, D., Chao, X. and Yang, Z. 2018. Influence of Bi nonstoichiometry on the energy storage properties of 0.93 KNN–0.07 Bi x MN relaxor ferroelectrics. Journal of Advanced Dielectrics, 8(06), p.1830006.
[4] Shaheen, K., Shah, Z., Arshad, T., Ma, L., Liu, M., Wang, Y., Cui., J. and Suo, H. 2020. Electrical, dielectric and photocatalytic applications of iron-based nanocomposites. Applied Physics A, 126, pp.1-10.
[5] Pan, W., Cao, M., Hao, H., Yao, Z., Yu, Z. and Liu, H. 2020. Defect engineering toward the structures and dielectric behaviors of (Nb, Zn) co-doped SrTiO3 ceramics. Journal of the European Ceramic Society, 40(1), pp.49-55.
[6] Wahba, A. M., and Mohamed, M. B. 2014. Structural, magnetic, and dielectric properties of nanocrystalline Cr-substituted Co0. 8Ni0. 2Fe2O4 ferrite. Ceramics International, 40(4), pp.6127-6135.
[7] Sadasivuni, K. K., Ponnamma, D., Kumar, B., Strankowski, M., Cardinaels, R., Moldenaers, P., Thoms., S. and Grohens, Y. 2014. Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Composites Science and Technology, 104, pp.18-25.
[8] Mehmood, K., Rehman, A. U., Amin, N., Morley, N. A. and Arshad, M. I. 2023. Graphene nanoplatelets/Ni-Co-Nd spinel ferrite composites with improving dielectric properties. Journal of Alloys and Compounds, 930, pp.167335.
[9] Chireh, M., Naseri, M., Rahimi, M., Soleymani, A. R., 2024. Synthesis ZnO/RGO nanocomposite: Structural characteristics and antifungal/antibacterial properties. Progress in Physics of Applied Materials, 4, pp.77-81.
[10] Prasad, R., Bhattacharyya, A. and Nguyen, Q. D. 2017. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Frontiers in Microbiology, 8, p.1014.
[11] Rodríguez-González, V., Terashima, C., and Fujishima, A. 2019. Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 40, pp.49-67.
[12] Amiri, H., Nabizadeh, R., Martinez, S. S., Shahtaheri, S. J., Yaghmaeian, K., Badiei, A., and Naddafi, K., 2018. Response surface methodology modeling to improve degradation of Chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicology and environmental safety, 147, pp.919-925.
[13] El-Saeid, M. H., BaQais, A., & Alshabanat, M., 2022. Study of the photocatalytic degradation of highly abundant pesticides in agricultural soils. Molecules, 27(3), p.634.
[14] Anajafi, Z., Naseri, M., Hashemi, A. and Neri, G., 2023. Structural and photocatalytic properties of CeFeO3 and CeFeO3/GO nanostructures. Journal of Sol-Gel Science and Technology, 105(1), pp.116-126.
[15] Hashemi, A., Naseri, M. and Chireh, M. 2021. Evaluation of physical properties, mechanism and photocatalytic activities of potassium ferrate nanostructures as an adsorbent for MB dye under UV light. Applied Physics A, 127(10), p.743.
[16] Chireh, M., Karam, Z. M., Naseri, M., Jafarinejad-Farsangi, S. and Ghaedamini, H. 2022. Synthesis, characterization and cytotoxicity study of graphene/doped ZnO/SiO2 nanocomposites. Applied PhysicsA, 128(4), p.307.
[17] Omar, F. S., Nay Ming, H., Hafiz, S. M. and Ngee, L. H. 2014. Microwave synthesis of zinc oxide/reduced graphene oxide hybrid for adsorption-photocatalysis application. International Journal of Photoenergy, 2014(1), p.176835.
[18] Chireh, M., Naseri, M., and Kamalianfar, A. 2020. 57Fe Mossbauer spectroscopy investigation of NiFe2O4 and MnFe2O4 ferrite nanoparticles prepared by thermal treatment method. Applied Physics A, 126(7), p.543.
[19] Zulfiqar Ahmed, M. N., Chandrasekhar, K. B., Jahagirdar, A. A., Nagabhushana, H. and Nagabhushana, B. M. 2015. Photocatalytic activity of nanocrystalline ZnO, α-Fe2O3 and ZnFe2O4/ZnO. Applied Nanoscience, 5, pp.961-968.
[20] Zamani, M., Naderi, E., Aghajanzadeh, M., Naseri, M., Sharafi, A. and Danafar, H. 2019. Co1−XZnxFe2O4 based nanocarriers for dual-targeted anticancer drug delivery: Synthesis, characterization and in vivo and in vitro biocompatibility study. Journal of molecular liquids, 274, pp.60-67.
[21] Chireh, M., Naseri, M., &Ghaedamini, H. 2021. Enhanced microwave absorption performance of graphene/doped Li ferrite nanocomposites. Advanced Powder Technology, 32(12), pp.4697-4710.
[22] Salimi, N., Mohammadi-Manesh, E., Ahmadvand, N., Danafar, H. and Ghiasvand, S. 2024. Curcumin-Loaded by Fe3O4/GO and Fe3O4/ZnO/GO Nanocomposites for Drug Delivery Applications: Synthesis, Characterization and Anticancer Assessment. Journal of Inorganic and Organometallic Polymers and Materials, 34(3), pp.1256-1271.
[23] Safari, M., Naseri, M., Naderi, E. and Esmaeili, E. 2022. Magnetically targeted delivery of Quercetin-loaded Ca1–x Mn x Fe2O4nanocarriers: synthesis, characterization and in vitro study on HEK 293-T and MCF-7 cell lines. Applied Physics A, 128(6), p.486.
[24] Liu, P., Yao, Z. and Zhou, J. 2015. Preparation of reduced graphene oxide/Ni0. 4Zn0. 4Co0. 2Fe2O4 nanocomposites and their excellent microwave absorption properties. Ceramics International, 41(10), pp.13409-13416.
[25] Naseri, M., 2015. Optical and magnetic properties of monophasic cadmium ferrite (CdFe2O4) nanostructure prepared by thermal treatment method. Journal of Magnetism and Magnetic Materials, 392, 107-113.
[26] Safari, M., Naseri, M., Esmaeili, E., and Naderi, E. 2023. Green synthesis by celery seed extract and improvement of the anticancer activity of quercetin-loaded rGO/Ca1-xMnxFe2O4 nanocarriers using UV light in breast cancer cells. Molecular Structure, 1281, p.135059.
[27] Mathai, J., Jose, A. K., Anjana, M. P., Aleena, P. A., Kunjumon, J., Ittyachan, R. and Sajan, D. 2023. Substantial effect of Cr doping on the third-order nonlinear optical properties of ZnO nanostructures. Optical Materials, 142, p.114128.
[28] Chireh, M., Naseri, M., andGhiasvand, S. 2019.Enhanced photocatalytic and antibacterial activities of RGO/LiFe5O8 nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 385, p.112063.
[29] Mojtabazadeh, H., & Safaei-Ghomi, J. 2025. High conductivity graphite paste for radio frequency identification tag with wireless hydrogen sensor based on CeO2–Fe2O3–graphene oxide. RSC Advances, 15(16), pp.12773–12784.
[30] Phromma, S., Wutikhun, T., Kasamechonchung, P., Eksangsri, T., and Sapcharoenkun, C. 2020. Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Applied sciences, 10(3), p.993.
[31] Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., and Wang, X. 2020. Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 10(3), p.546.
[32] Tewari, C., Tatrari, G., Kumar, S., Pathak, M., Rawat, K. S., Kim, Y. N., and Sahoo, N. G. 2023. Can graphene-based composites and membranes solve current water purification challenges-a comprehensive review. Desalination, 567, p.116952.
[33] Ahmad, H., Fan, M., and Hui, D. 2018. Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering, 145, pp.270-280.
[34] Shahriari, E., Raeisi, M., & Alamdari, S. 2025. Simulation and Fabrication of Three-Layer SnO2/Ag/SnO2 Nanostructure Coating for Energy Storage. Progress in Physics of Applied Materials, 5(1), pp.17-22.
[35] Mousavi-Ebadi, M., Safaei-Ghomi, J., & Mojtabazadeh, H. 2025. Anchoring cobalt nanoparticles on to the grafted mono(6-ethylene-diamino-6-deoxy)-β-cyclodextrin to magnetic chitosan for enhanced catalytic performance of the synthesis of pyrano[2,3-c]pyrazole-3-carboxylates. Carbohydrate Polymer Technologies and Applications, pp.100923.
[36] Mojtabazadeh, H., & Safaei-Ghomi, J. 2025. Sustainable electrochemical depolymerization of chitosan into glucosamine hydrochloride using N-hydroxyphthalimide as a redox catalyst. Carbohydrate Polymers, pp.124008.
[37] Gu, L., Zhang, H., Jiao, Z., Li, M., Wu, M., & Lei, Y. 2016. Glucosamine-induced growth of highly distributed TiO2 nanoparticles on graphene nanosheets as high-performance photocatalysts. RSC advances, 6(71), pp.67039–67048.
[38] Hashemi, A., Tavafi, H., Naseri, M., Mojtabazadeh, H., Abedi, M., & Tork, N. 2024. Structural and antibacterial properties of AgFe2O4 and Fe3O4 nanoparticles, and their nanocomposites. Progress in Physics of Applied Materials, 4(1), pp.37–46.
[39] kafi ahmadi, L., & khademinia, s. 2022. Fabrication of 3,4-dihydropyrimidin-2-(1H)-ones/thione compounds via Cu2V2O7 nanocatalyst synthesized by solid state method. Progress in Physics of Applied Materials, 2(1), pp.49-56.
[40] Anajafi, Z., Naseri, M., Hashemi, A., & Neri, G. 2023. Structural and photocatalytic properties of CeFeO3 and CeFeO3/GO nanostructures. Journal of Sol-Gel Science and Technology, 105(1), pp.116–126.