DFT Investigation of Electro-Optical Properties of a Novel Liquid Crystal Molecule Under Extraneous Electric Field (THz)

Document Type : Original Article

Authors

1 Department of Physics, DDU Gorakhpur University, Gorakhpur 273009, INDIA

2 Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, INDIA

10.22075/ppam.2025.38335.1156

Abstract

This work presents theoretical investigations into the electro-optical response of an aroylhydrazone liquid crystal (LC) N-[2-Hydroxy-4-dodecylidene]-N′-[4′-dodecyloxybenzoyl]hydrazine (2HDDH) under the influence of terahertz (THz) range electric fields, a regime rarely explored for this class of materials. While previous studies on LC molecules have predominantly focused on static or low-frequency fields, the effect of high-frequency (THz) electric fields on their electro-optical properties remains largely unexplored, limiting the understanding of their potential in next-generation photonic and optoelectronic technologies. Using a theoretical framework originally developed for organic compounds and extended here to THz device contexts, we computed order parameter, birefringence, director angle, vertical electronic transitions, frontier molecular orbitals (HOMO–LUMO), and molecular electrostatic potential (MEP) surfaces. The finite field approach was employed to evaluate order parameter, birefringence, and magic angle, while DFT and TD-DFT calculations revealed high anisotropic polarizability (Δα = 466.45 Bohr³), a moderate dipole moment (μ = 5.67 D), and strong UV absorption. These results identify 2HDDH as a thermally stable, electro-optically active material with significant promise for THz-frequency optoelectronic applications, including advanced displays, sensors, and OLEDs.

Keywords

Main Subjects


© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

  1. De Gennes, P.G. and Prost, J., 1993. The physics of liquid crystals(No. 83). Oxford University Press.
  2. Klingbiel, R.T., Genova, D.J., Criswell, T.R. and Van Meter, J.P., 1974. Comparison of the dielectric behavior of several Schiff-base and phenyl benzoate liquid crystals. Journal of the American Chemical Society96(25), pp.7651-7655.
  3. Mandal, P., Mitra, M., Bhattacharjee, K., Paul, R. and Paul, S., 1987. Nematic order of APAPA from X-ray diffraction and optical studies. Molecular Crystals and Liquid Crystals149(1), pp.203-210.
  4. Korkmaz, B., Canli, N.Y., Özdemir, Z.G., Okutan, M., Gursel, Y.H., Sarac, A. and Şenkal, B.F., 2016. Synthesis and electrical properties of hydrogen-bonded liquid crystal polymer. Journal of Molecular Liquids219, pp.1030-1035.
  5. Guan, L. and Zhao, Y., 2001. Self-assembled gels of liquid crystals: hydrogen-bonded aggregates formed in various liquid crystalline textures. Journal of Materials Chemistry11(5), pp.1339-1344.
  6. Muthukumar, M., Ober, C.K. and Thomas, E.L., 1997. Competing interactions and levels of ordering in self-organizing polymeric materials. Science277(5330), pp.1225-1232.
  7. Vikram, K., Singh, R.K. and Gupta, S.N., 2018. A new low-temperature solid modification in 1-isothiocyanato-4-(trans‑4-propylcyclohexyl) benzene (3CHBT) probed by Raman spectroscopy and quantum chemical calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy190, pp.188-196.
  8. Vikram, K., Tarcea, N., Popp, J. and Singh, R.K., 2010. Temperature-dependent Raman study of the smectic to nematic phase transition and vibrational analysis using density functional theory of the liquid crystalline system 4-decyloxy benzoic acid. Applied spectroscopy64(2), pp.187-194.
  9. Takanishi, Y., Takezoe, H., Watanabe, J., Takahashi, Y. and Iida, A., 2006. Intralayer molecular orientation in the B1 phase of a prototype bent-core molecule P-6-O-PIMB studied by X-ray microbeam diffraction. Journal of Materials Chemistry16(9), pp.816-818.
  10. Achten, R., Cuypers, R., Giesbers, M., Koudijs, A., Marcelis, A.T. and Sudhölter, E.J., 2004. Asymmetric banana-shaped liquid crystals with two different terminal alkoxy chains. Liquid crystals31(8), pp.1167-1174.
  11. Kagatikar, S. and Sunil, D., 2021. Schiff bases and their complexes in organic light-emitting diode application. Journal of Electronic Materials50(12), pp.6708-6723.
  12. Mohan, M., Pangannaya, S., Satyanarayan, M.N. and Trivedi, D.R., 2018. Photophysical and electrochemical properties of organic molecules: Solvatochromic effect and DFT studies. Optical Materials77, pp.211-220.
  13. Singh, H.K., Singh, S.K., Nandi, R., Rao, D.S., Prasad, S.K., Singh, R.K. and Singh, B., 2016. Observation of exceptional ‘de Vries-like in a conventional aroylhydrazone based liquid crystal. RSC Advances6(63), pp.57799-57802.
  14. Shanker, G., Prehm, M., Yelamaggad, C.V. and Tschierske, C., 2011. Benzylidenehydrazine-based room temperature columnar liquid crystals. Journal of Materials Chemistry21(14), pp.5307-5311.
  15. Kanth, P., Rao, D.S., Prasad, S.K. and Singh, B., 2022. Investigation of mesomorphic, photophysical, and gelation behavior in aroylhydrazone-based liquid crystals: Observation of mesophase crossover phenomena. Journal of Molecular Liquids346, pp.117084.
  16. Singh, S.K., Kumar, V., Nandi, R., Singh, H.K., Singh, R.K. and Singh, B., 2015. Microwave-assisted synthesis and mesomorphic investigations of p-substituted aroylhydrazones and their nickel (II) and copper (II) complexes. Liquid Crystals42(2), pp.222-232.
  17. Singh, H.K., Pradhan, B., Singh, S.K., Nandi, R., Rao, D.S.S., Prasad, S.K., Achalkumar, A.S. and Singh, B., 2018. Substituted Aroylhydrazone Based Polycatenars: Tuning of Liquid Crystalline Self‐Assembly. Chemistry Select3(14), pp.4027-4037.
  18. Meyer, R.B., 1969. Piezoelectric effects in liquid crystals. Physical Review Letters22(18), p.918.
  19. Balamurugan, S., Kannan, P., Yadupati, K. and Roy, A., 2011. Electro-optical switching studies on 1, 3-phenylene based banana shaped liquid crystals. Journal of Molecular Structure1001(1-3), pp.118-124.
  20. Balamurugan, S., Kannan, P., Yadupati, K. and Roy, A., 2011. Electro-optical investigations and effect of asymmetry in bent-core liquid crystals. Liquid Crystals38(9), pp.1199-1207.
  21. Sarna, R.K., Bhide, V.G. and Bahadur, B., 1982. Refractive indices, density and order parameter of some liquid crystals. Molecular Crystals and Liquid Crystals88(1-4), pp.65-79.
  22. Ferrarini, A., Moro, G.J. and Nordio, P.L., 1996. Shape model for ordering properties of molecular dopants inducing chiral mesophases. Molecular Physics87(2), pp.485-499.
  23. Kushwaha, Y., Singh, S.K. and Yadava, U., 2024. Insights into the electronic structure and interaction energies of 4-ethoxy-N-(4-ethoxy-2-hydoxybenzylidene) benzohydrazide. Journal of Molecular Liquids409, p.125400.
  24. Tripathi, S., Ganguly, P., Haranath, D., Haase, W. and Biradar, A.M., 2013. Optical response of ferroelectric liquid crystals doped with metal nanoparticles. Applied Physics Letters102(6).
  25. Jakeman, E. and Raynes, E.P., 1972. Electro-optic response times in liquid crystals. Physics Letters A39(1), pp.69-70.
  26. Praveen, P.L., Ojha, D.P., 2012. Structure and electronic absorption spectra of nematogenic alkoxy cinnamic acids–a comparative study based on semiempirical and DFT methods. Journal of Molecular Modeling18, pp.1513–1521.
  27. Koch, W. and Holthausen, M.C., 2015. A chemist's guide to density functional theory. John Wiley & Sons.
  28. Song, Q., Gauza, S., Xianyu, H., Wu, S.T., Liao, Y.M., Chang, C.Y. and Hsu, C.S., 2010. High birefringence lateral difluoro phenyl tolane liquid crystals. Liquid Crystals37(2), pp.139-147.
  29. Wu, Y., Zhou, Y., Yin, L., Zou, G. and Zhang, Q., 2013. Photoinduced liquid crystal blue phase by bent-shaped cis isomer of the azobenzene doped in chiral nematic liquid crystal. Liquid Crystals40(6), pp.726-733.
  30. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H. and Li, X., 2016. Gaussian16 Revision A. 03 (Wallingford, CT: Gaussian Inc.)
  31. GaussView, V.6.1, 2016, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc., Shawnee Mission, KS201.
  32. Pandey, A. and Kumar, N., 2023. Tracing the transition from covalent to non-covalent functionalization of pyrene through C-, N-, and O-based ionic and radical substrates using quantum mechanical calculations. RSC Advances13(21), pp.14119-14130.
  33. Yadava, U., Gupta, D.K. and Roychoudhury, M., 2010. Theoretical investigations on molecular structure and IR frequencies of 4-n-nonyl-4′-cyanobiphenyl in light of experimental results. Journal of Molecular Liquids156(2-3), pp.187-190.
  34. Kumar, N., Pal, B., Chaudhary, S., Singh, D. and Kumar, D., 2020. Reduced graphene oxide contains a minimum of six oxygen atoms for higher dipolar strength: A DFT study. French-Ukrainian Journal of Chemistry8(1), pp.167-173.
  35. Antony, J. and Grimme, S., 2006. Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Physical Chemistry Chemical Physics8(45), pp.5287-5293.
  36. Kumar, N., Singh, P., Chaudhary, S., Thapa, K.B., Upadhyay, P., Dwivedi, A.K. and Kumar, D., 2020. Spectroscopy Existing behind the Electro-Optical Properties with an Even-Odd Effect of nCB Liquid Crystal Molecules: A Theoretical Approach. Acta Physica Polonica A137(6), pp.1135-1140.
  37. Kumar, N., Singh, P., Thapa, K.B. and Kumar, D., 2020. Molecular spectroscopy and adverse optical properties of N-(p-hexyloxy-benzylidene)–p-toluidine (HBT) liquid crystal molecule studied by DFT methodology. IOP SciNotes1(1), p.015202.
  38. Kumar, N., Chaudhary, S., Singh, P., Thapa, K.B. and Kumar, D., 2020. Electro-optical odd-even effect of APAPA liquid crystal molecules studied under the influence of an extraneous electric field (THz): A theoretical approach. Journal of Molecular Liquids318, p.114254.
  39. Parr, R.G., 1989. Density functional theory of atoms and molecules. In Horizons of Quantum Chemistry: Proceedings of the Third International Congress of Quantum Chemistry Held at Kyoto, Japan, October 29-November 3, 1979(pp. 5-15). Dordrecht: Springer Netherlands.
  40. Ridley, J. and Zerner, M., 1973. An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theoretica chimica acta32(2), pp.111-134.
  41. Parr, R.G. and Pearson, R.G., 1983. Absolute hardness: a companion parameter to absolute electronegativity. Journal of the American Chemical Society105(26), pp.7512-7516.
  42. Parr, R.G., Szentpály, L.V. and Liu, S., 1999. Electrophilicity index. Journal of the American Chemical Society121(9), pp.1922-1924.
  43. Kushwaha, Y. and Yadava, U., 2025. DFT investigation on the effect of asymmetry on electro-optical properties of bent-core liquid crystals. Phase Transitions98(1), pp.55-71.
  44. Helfrich, W., 1970. Effect of electric fields on the temperature of phase transitions of liquid crystals. Physical Review Letters24(5), p.201.
  45. Raynes, P., 1993. LIQUID CRYSTALS — Second Edition, by S CHANDRASEKHAR, Cambridge University Press, (1992), ISBN 0-521-41747-3 (HB), ISBN 0-521-42741-X (PB). Liquid Crystals Today, 3(3), 7.
  46. Talukder, J.R., Lin, H.Y. and Wu, S.T., 2019. Photo-and electrical-responsive liquid crystal smart dimmer for augmented reality displays. Optics Express27(13), pp.18169-18179.
  47. Collings, P.J. and Goodby, J.W., 2019. Introduction to liquid crystals: chemistry and physics. CRC Press.
  48. Parr, R.G., Gadre, S.R. and Bartolotti, L.J., 1979. Local density functional theory of atoms and molecules. Proceedings of the National Academy of Sciences76(6), pp.2522-2526.