[1] Tang, W., Huang, Y., Han, L., Liu, R., Su, Y., Guo, X. and Yan, F., 2019. Recent progress in printable organic field effect transistors. Journal of Materials Chemistry C, 7(4), pp.790-808.
[2] Bahari, A., Robenhagen, U., Morgen, P. and Li, Z.S., 2005. Growth of ultrathin silicon nitride on Si (111) at low temperatures. Physical Review B—Condensed Matter and Materials Physics, 72(20), p.205323.
[3] Hallani, R.K., Moser, M., Bristow, H., Jenart, M.V., Faber, H., Neophytou, M., Yarali, E., Paterson, A.F., Anthopoulos, T.D. and McCulloch, I., 2019. Low-temperature cross-linking benzocyclobutene based polymer dielectric for organic thin film transistors on plastic substrates. The Journal of Organic Chemistry, 85(1), pp.277-283.
[4] Zhang, L., Yang, D., Yang, S. and Zou, B., 2014. Solution-processed P3HT-based photodetector with field-effect transistor configuration. Applied Physics A, 116(3), pp.1511-1516.
[5] Kim, J.H., Jo, I.Y., Baek, S., Cho, H.R., Park, S., Lee, J., Kim, C.H. and Yoon, M.H., 2024. Investigating versatile capabilities of organic field-effect transistors incorporated with vacuum-deposited metal nanoparticles. Journal of Materials Chemistry C, 12(16), pp.5941-5950.
[6] Soltani, B., Babaeipour, M. and Bahari, A., 2017. Studying electrical characteristics of Al2O3/PVP nano-hybrid composites as OFET gate dielectric. Journal of Materials Science: Materials in Electronics, 28(5), pp.4378-4387.
[7] Hashemi, A. and Bahari, A., 2018. Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s. Current Applied Physics, 18(12), pp.1546-1552.
[8] Bahari, A., 2024. Eco-friendly water-induced lithium oxide/polyethyleneimine ethoxylated as a possible gate dielectric of the organic field effect transistor. Journal of Materials Science: Materials in Electronics, 35(26), p.1709.
[9] Gholipur, R. and Bahari, A., 2017. Tunability of negative permittivity and permeability of Ag/Zr0.9Ni0.1Oy nanocomposites with morphology. Electronic Materials Letters, 13(2), pp.179-183.
[10] Shahbazi, M., Bahari, A. and Ghasemi, S., 2016. Structural and frequency-dependent dielectric properties of PVP-SiO2-TMSPM hybrid thin films. Organic Electronics, 32, pp.100-108.
[11] Aziz, J., Kim, H., Hussain, T., Lee, H., Choi, T., Rehman, S., Khan, M.F., Kadam, K.D., Patil, H., Mehdi, S.M.Z. and Lee, M.J., 2022. Power efficient transistors with low subthreshold swing using abrupt switching devices. Nano Energy, 95, p.107060.
[12] Bahari, A., Delkhosh, F. and Gholipur, R., 2025. Ni-Doped Cu10%/YIG Nanoparticle-Based Metamaterials: Synthesis and Electromagnetic Property Investigation at Terahertz Frequencies. Progress in Physics of Applied Materials, 5(1), pp.31-38.
[13] Abouk, Y., Bahari, A. and Gholipur, R., 2023. Synthesis and characterization of Cu/YIG nanoparticles-Terahertz material. Optical materials, 142, p.113992.
[14] Li, J., Tamayo, A., Quintana, A., Riera-Galindo, S., Pfattner, R., Gong, Y. and Mas-Torrent, M., 2023. Binder polymer influence on the electrical and UV response of organic field-effect transistors. Journal of Materials Chemistry C, 11(24), pp.8178-8185.
[15] Guo, Y., Deng, J., Niu, J., Duan, C., Long, S., Li, M. and Li, L., 2023. observation of large threshold voltage shift induced by pre-applied voltage to SiO2 gate dielectric in organic field-effect transistors. Electronics, 12(3), p.540.
[16] Ajayan, J., Sreejith, S., Manikandan, M., Sreenivasulu, V.B., Kumari, N.A. and Ravindran, A., 2024. An intensive study on organic thin film transistors (OTFTs) for future flexible/wearable electronics applications. Micro and Nanostructures, 187, p.207766.
[17] Xie, P., Liu, T., Sun, J., Jiang, J., Yuan, Y., Gao, Y., Zhou, J. and Yang, J., 2020. Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over 18 cm2/(V s). Sci. Bull., 65(10), pp.791-795.
[18] Hu, Z., Li, D., Lu, W., Qin, Z., Ran, Y., Wang, X. and Lu, G., 2023. In situ tuning of the performance of polymer field-effect transistors by soft plasma etching. Materials Advances, 4(13), pp.2811-2820.
[19] Kim, G., Fuentes-Hernandez, C., Jia, X. and Kippelen, B., 2020. Organic thin-film transistors with a bottom bilayer gate dielectric having a low operating voltage and high operational stability. ACS Applied Electronic Materials, 2(9), pp.2813-2818.
[20] Hashemi, A., Bahari, A. and Ghasemi, S., 2017. The low threshold voltage n-type silicon transistors based on a polymer/silica nanocomposite gate dielectric: The effect of annealing temperatures on their operation. Applied Surface Science, 416, pp.234-240.
[21] Paterson, A.F., Mottram, A.D., Faber, H., Niazi, M.R., Fei, Z., Heeney, M. and Anthopoulos, T.D., 2019. Impact of the gate dielectric on contact resistance in high‐mobility organic transistors. Advanced Electronic Materials, 5(5), p.1800723.
[22] FarhadiKoutenaei, A., Ali Mahdi, M., Bahari, A. and Al-Jelif, A., 2024. Different behavior of Nano sheet and Bulk of the hexagonal boron nitride with first principal calculation approach. Progress in Physics of Applied Materials, 4(1), pp.13-19.
[23] Lee, J.H., Seo, Y., Park, Y.D., Anthony, J.E., Kwak, D.H., Lim, J.A., Ko, S., Jang, H.W., Cho, K. and Lee, W.H., 2019. Effect of crystallization modes in TIPS-pentacene/insulating polymer blends on the gas sensing properties of organic field-effect transistors. Scientific reports, 9(1), p.21.
[24] Shin, E., Yoo, J., Yoo, G., Kim, Y.J. and Kim, Y.S., 2019. Eco-friendly cross-linked polymeric dielectric material based on natural tannic acid. Chemical Engineering Journal, 358, pp.170-175.
[25] Nketia‐Yawson, B. and Noh, Y.Y., 2018. Recent progress on high‐capacitance polymer gate dielectrics for flexible low‐voltage transistors. Advanced Functional Materials, 28(42), p.1802201.
[26] Li, P., Cai, L., Wang, G., Zhou, D.C., Xiang, J., Zhang, Y.J., Ding, B.F., Alameh, K. and Song, Q.L., 2015. PEIE capped ZnO as cathode buffer layer with enhanced charge transfer ability for high efficiency polymer solar cells. Synthetic Metals, 203, pp.243-248.
[27] Rullyani, C., Ramesh, M., Sung, C.F., Lin, H.C. and Chu, C.W., 2018. Natural polymers for disposable organic thin film transistors. Organic Electronics, 54, pp.154-160.
[28] Hashemi, A., Bahari, A. and Ghasemi, S., 2017. Reduction the leakage current through povidone-SiO2 nano-composite as a promising gate dielectric of FETs. Journal of Materials Science: Materials in Electronics, 28(18), pp.13313-13319.
[29] Shahbazi, M., Bahari, A. and Ghasemi, S., 2016. Studying saturation mobility, threshold voltage, and stability of PMMA-SiO2-TMSPM nano-hybrid as OFET gate dielectric. Synthetic Metals, 221, pp.332-339.
[30] Alavisadr, S.M., 2025. Structural, Electronic, and Magnetic Properties of Mn2NbAl1-xSix (x= 0.0–1.0) Alloys. Progress in Physics of Applied Materials, 5(2), pp.73-82.
[31] Chen, X., Guo, J., Peng, L., Wang, Q.,, Jiang, S., and Li, Y., 2023. Charge transport in organic field-effect transistors, Materials Today Electronics, 6, PP. 100077-100088.
[32] Kumar, P., Mishra, V.N. and Prakash, R., 2023. Low voltage operable eco-friendly water-induced LiO x dielectric based organic field effect transistor. IEEE Electron Device Letters, 44(4), pp.638-641.
[33] Gillan, L., Li, S., Lahtinen, J., Chang, C.H., Alastalo, A. and Leppäniemi, J., 2021. Inkjet‐Printed Ternary Oxide Dielectric and Doped Interface Layer for Metal‐Oxide Thin‐Film Transistors with Low Voltage Operation. Advanced Materials Interfaces, 8(12), p.2100728.
[34] Bahari, A., Ahmady-Asbchin, S., Naeij, M., Farhadikoutenaei, A. and Al-Jilef, A., 2023. Green synthesis and study of structural properties of Copper nanocrystallites from hawthorn plant extract and study of its antibacterial activities. International Journal of Nano Dimension, 14(2 (April 2023)), PP. 138-144.
[35] Mazaheri, E., Bahari, A. and Ghasemi, S., 2024. GO/Co-MOF/NiMnCu nanocomposite as a possible candidate for the future of the supercapacitor generations. Progress in Physics of Applied Materials, 4(2), pp.135-144.