Nonferritic Metallic Oxide / Polyvinyl Alcohol Polymer Nanocomposite as a Biocompatible Dielectric Material for Future Generations of Clean Energy Systems

Document Type : Original Article

Authors

1 Department of Solid State Physics, Faculty of Sciences, University of Mazandaran, Babolsar, Iran

2 Department of Physics Education, Farhangian University, Tehran, Iran

Abstract

In the last decades, there has been much research in the manufacture of clean energy systems such as display components and chips due to the large-scale production and economical synthesis conditions. For getting low dependence on fossil fuel consumption, it has led researchers to use, as an example of organic field effect transistors (OFETs), eco-friendly gate dielectric materials which are bio-compatible with nature. For this reason, among a large number of metal oxides, polymers and organic materials, as a novelty of the present work, the electrical and dielectric characteristics of nonferritic metallic- lithium oxide (NFLiOx) an eco-friendly metal oxide and polyvinyl alcohol polymer (PVA) are investigated and tested as a possible alternative biocompatible dielectric material for the next OFET generations. 

Keywords

Main Subjects


© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1]    Tang, W., Huang, Y., Han, L., Liu, R., Su, Y., Guo, X. and Yan, F., 2019. Recent progress in printable organic field effect transistors. Journal of Materials Chemistry C7(4), pp.790-808.
[2]  Bahari, A., Robenhagen, U., Morgen, P. and Li, Z.S., 2005. Growth of ultrathin silicon nitride on Si (111) at low temperatures. Physical Review B—Condensed Matter and Materials Physics72(20), p.205323.
[3]  Hallani, R.K., Moser, M., Bristow, H., Jenart, M.V., Faber, H., Neophytou, M., Yarali, E., Paterson, A.F., Anthopoulos, T.D. and McCulloch, I., 2019. Low-temperature cross-linking benzocyclobutene based polymer dielectric for organic thin film transistors on plastic substrates. The Journal of Organic Chemistry85(1), pp.277-283.
[4]  Zhang, L., Yang, D., Yang, S. and Zou, B., 2014. Solution-processed P3HT-based photodetector with field-effect transistor configuration. Applied Physics A116(3), pp.1511-1516.
 [5]    Kim, J.H., Jo, I.Y., Baek, S., Cho, H.R., Park, S., Lee, J., Kim, C.H. and Yoon, M.H., 2024. Investigating versatile capabilities of organic field-effect transistors incorporated with vacuum-deposited metal nanoparticles. Journal of Materials Chemistry C12(16), pp.5941-5950.
[6]   Soltani, B., Babaeipour, M. and Bahari, A., 2017. Studying electrical characteristics of Al2O3/PVP nano-hybrid composites as OFET gate dielectric. Journal of Materials Science: Materials in Electronics28(5), pp.4378-4387.
 [7] Hashemi, A. and Bahari, A., 2018. Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2sCurrent Applied Physics18(12), pp.1546-1552.
[8] Bahari, A., 2024. Eco-friendly water-induced lithium oxide/polyethyleneimine ethoxylated as a possible gate dielectric of the organic field effect transistor. Journal of Materials Science: Materials in Electronics35(26), p.1709.
[9]  Gholipur, R. and Bahari, A., 2017. Tunability of negative permittivity and permeability of Ag/Zr0.9Ni0.1Oy nanocomposites with morphology. Electronic Materials Letters13(2), pp.179-183.
[10]  Shahbazi, M., Bahari, A. and Ghasemi, S., 2016. Structural and frequency-dependent dielectric properties of PVP-SiO2-TMSPM hybrid thin films. Organic Electronics32, pp.100-108.
[11]   Aziz, J., Kim, H., Hussain, T., Lee, H., Choi, T., Rehman, S., Khan, M.F., Kadam, K.D., Patil, H., Mehdi, S.M.Z. and Lee, M.J., 2022. Power efficient transistors with low subthreshold swing using abrupt switching devices. Nano Energy95, p.107060.
[12] Bahari, A., Delkhosh, F. and Gholipur, R., 2025. Ni-Doped Cu10%/YIG Nanoparticle-Based Metamaterials: Synthesis and Electromagnetic Property Investigation at Terahertz Frequencies. Progress in Physics of Applied Materials5(1), pp.31-38.
[13] Abouk, Y., Bahari, A. and Gholipur, R., 2023. Synthesis and characterization of Cu/YIG nanoparticles-Terahertz material. Optical materials142, p.113992.
[14]  Li, J., Tamayo, A., Quintana, A., Riera-Galindo, S., Pfattner, R., Gong, Y. and Mas-Torrent, M., 2023. Binder polymer influence on the electrical and UV response of organic field-effect transistors. Journal of Materials Chemistry C11(24), pp.8178-8185.
[15]   Guo, Y., Deng, J., Niu, J., Duan, C., Long, S., Li, M. and Li, L., 2023. observation of large threshold voltage shift induced by pre-applied voltage to SiO2 gate dielectric in organic field-effect transistors. Electronics12(3), p.540.
[16] Ajayan, J., Sreejith, S., Manikandan, M., Sreenivasulu, V.B., Kumari, N.A. and Ravindran, A., 2024. An intensive study on organic thin film transistors (OTFTs) for future flexible/wearable electronics applications. Micro and Nanostructures187, p.207766.
[17] Xie, P., Liu, T., Sun, J., Jiang, J., Yuan, Y., Gao, Y., Zhou, J. and Yang, J., 2020. Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over 18 cm2/(V s). Sci. Bull.65(10), pp.791-795.
[18]  Hu, Z., Li, D., Lu, W., Qin, Z., Ran, Y., Wang, X. and Lu, G., 2023. In situ tuning of the performance of polymer field-effect transistors by soft plasma etching. Materials Advances4(13), pp.2811-2820.
[19]  Kim, G., Fuentes-Hernandez, C., Jia, X. and Kippelen, B., 2020. Organic thin-film transistors with a bottom bilayer gate dielectric having a low operating voltage and high operational stability. ACS Applied Electronic Materials2(9), pp.2813-2818.
[20] Hashemi, A., Bahari, A. and Ghasemi, S., 2017. The low threshold voltage n-type silicon transistors based on a polymer/silica nanocomposite gate dielectric: The effect of annealing temperatures on their operation. Applied Surface Science416, pp.234-240.
[21] Paterson, A.F., Mottram, A.D., Faber, H., Niazi, M.R., Fei, Z., Heeney, M. and Anthopoulos, T.D., 2019. Impact of the gate dielectric on contact resistance in high‐mobility organic transistors. Advanced Electronic Materials5(5), p.1800723.
[22]  FarhadiKoutenaei, A., Ali Mahdi, M., Bahari, A. and Al-Jelif, A., 2024. Different behavior of Nano sheet and Bulk of the hexagonal boron nitride with first principal calculation approach. Progress in Physics of Applied Materials4(1), pp.13-19.
[23]  Lee, J.H., Seo, Y., Park, Y.D., Anthony, J.E., Kwak, D.H., Lim, J.A., Ko, S., Jang, H.W., Cho, K. and Lee, W.H., 2019. Effect of crystallization modes in TIPS-pentacene/insulating polymer blends on the gas sensing properties of organic field-effect transistors. Scientific reports9(1), p.21.
[24] Shin, E., Yoo, J., Yoo, G., Kim, Y.J. and Kim, Y.S., 2019. Eco-friendly cross-linked polymeric dielectric material based on natural tannic acid. Chemical Engineering Journal358, pp.170-175.
[25]  Nketia‐Yawson, B. and Noh, Y.Y., 2018. Recent progress on high‐capacitance polymer gate dielectrics for flexible low‐voltage transistors. Advanced Functional Materials28(42), p.1802201.
[26]  Li, P., Cai, L., Wang, G., Zhou, D.C., Xiang, J., Zhang, Y.J., Ding, B.F., Alameh, K. and Song, Q.L., 2015. PEIE capped ZnO as cathode buffer layer with enhanced charge transfer ability for high efficiency polymer solar cells. Synthetic Metals203, pp.243-248.
[27] Rullyani, C., Ramesh, M., Sung, C.F., Lin, H.C. and Chu, C.W., 2018. Natural polymers for disposable organic thin film transistors. Organic Electronics54, pp.154-160.
[28] Hashemi, A., Bahari, A. and Ghasemi, S., 2017. Reduction the leakage current through povidone-SiO2 nano-composite as a promising gate dielectric of FETs. Journal of Materials Science: Materials in Electronics28(18), pp.13313-13319.
[29] Shahbazi, M., Bahari, A. and Ghasemi, S., 2016. Studying saturation mobility, threshold voltage, and stability of PMMA-SiO2-TMSPM nano-hybrid as OFET gate dielectric. Synthetic Metals221, pp.332-339.
[30] Alavisadr, S.M., 2025. Structural, Electronic, and Magnetic Properties of Mn2NbAl1-xSix (x= 0.0–1.0) Alloys. Progress in Physics of Applied Materials5(2), pp.73-82.
[31]  Chen, X., Guo, J., Peng, L., Wang, Q.,, Jiang, S., and Li, Y., 2023. Charge transport in organic field-effect transistors, Materials Today Electronics, 6, PP. 100077-100088.
[32]  Kumar, P., Mishra, V.N. and Prakash, R., 2023. Low voltage operable eco-friendly water-induced LiO x dielectric based organic field effect transistor. IEEE Electron Device Letters44(4), pp.638-641.
[33] Gillan, L., Li, S., Lahtinen, J., Chang, C.H., Alastalo, A. and Leppäniemi, J., 2021. Inkjet‐Printed Ternary Oxide Dielectric and Doped Interface Layer for Metal‐Oxide Thin‐Film Transistors with Low Voltage Operation. Advanced Materials Interfaces8(12), p.2100728.
[34]  Bahari, A., Ahmady-Asbchin, S., Naeij, M., Farhadikoutenaei, A. and Al-Jilef, A., 2023. Green synthesis and study of structural properties of Copper nanocrystallites from hawthorn plant extract and study of its antibacterial activities. International Journal of Nano Dimension14(2 (April 2023)), PP. 138-144.
[35] Mazaheri, E., Bahari, A. and Ghasemi, S., 2024. GO/Co-MOF/NiMnCu nanocomposite as a possible candidate for the future of the supercapacitor generations. Progress in Physics of Applied Materials4(2), pp.135-144.