[1] Kounatidis, D., Dalamaga, M., Grivakou, E., Karampela, I., Koufopoulos, P., Dalopoulos, V., Adamidis, N., Mylona, E., Kaziani, A. and Vallianou, N.G., 2024. Third-generation tetracyclines: current knowledge and therapeutic potential. Biomolecules, 14(7), p.783.
[2] Daghrir, R. and Drogui, P., 2013. Tetracycline antibiotics in the environment: a review. Environmental chemistry letters, 11(3), pp.209-227.
[3] Zenou, V.Y. and Bakardjieva, S., 2018. Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis. Materials Characterization, 144, pp.287-296.
[4] Ma, J., Chen, Y., Zhou, G., Ge, H. and Liu, H., 2024. Recent advances in photocatalytic degradation of tetracycline antibiotics. Catalysts, 14(11), p.762.
[5] Chiarello, G.L., Paola, A.D., Palmisano, L. and Selli, E., 2011. Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen. Photochemical & Photobiological Sciences, 10(3), pp.355-360.
[6] Filippatos, P.P., Kelaidis, N., Vasilopoulou, M., Davazoglou, D. and Chroneos, A., 2021. Structural, electronic, and optical properties of group 6 doped anatase TiO2: a theoretical approach. Applied Sciences, 11(4), p.1657.
[7] Peiris, S., de Silva, H.B., Ranasinghe, K.N., Bandara, S.V. and Perera, I.R., 2021. Recent development and future prospects of TiO2 photocatalysis. Journal of the Chinese Chemical Society, 68(5), pp.738-769.
[8] Hamza, M.A., Abd El-Rahman, S.A., Ramadan, S.K., Ezz-Elregal, E.-E.M., Rizk, S.A. and Abou-Gamra, Z.M., 2024. The enhanced visible-light-driven photocatalytic performance of nanocrystalline TiO2 decorated by quinazolinone-photosensitizer toward photocatalytic treatment of simulated wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 452, p.115599.
[9] Qu, J., Chen, D., Li, N., Xu, Q., Li, H., He, J. and Lu, J., 2019. Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene. Applied Catalysis B: Environmental, 256, p.117877.
[10] Reyes, C., Fernandez, J., Freer, J., Mondaca, M.A., Zaror, C., Malato, S. and Mansilla, H.D., 2006. Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 184(1-2), pp.141-146.
[11] Zhu, X.D., Wang, Y.J., Sun, R.J. and Zhou, D.M., 2013. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere, 92(8), pp.925-932.
[12] Wu, S., Hu, H., Lin, Y., Zhang, J. and Hu, Y.H., 2020. Visible light photocatalytic degradation of tetracycline over TiO2. Chemical Engineering Journal, 382, p.122842.
[13] Qin, C., Tang, J., Qiao, R. and Lin, S., 2022. Tetracycline sensitizes TiO2 for visible light photocatalytic degradation via ligand-to-metal charge transfer. Chinese Chemical Letters, 33(12), pp.5218-5222.
[14] Pang, D., Liu, Y., Song, H., Chen, D., Zhu, W., Liu, R., Yang, H., Li, A. and Zhang, S., 2021. Trace Ti3+-and N-codoped TiO2 nanotube array anode for significantly enhanced electrocatalytic degradation of tetracycline and metronidazole. Chemical Engineering Journal, 405, p.126982.
[15] Liu, B., Deng, D., Lee, J.Y. and Aydil, E.S., 2010. Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries. Journal of Materials Research, 25(8), pp.1588-1594.
[16] Peng, L., Xu, X., Lv, Z., Song, J., He, M., Wang, Q., Yan, L., Li, Y. and Li, Z., 2012. Thermal and morphological study of Al2O3 nanofibers derived from boehmite precursor. Journal of thermal analysis and calorimetry, 110(2), pp.749-754.
[17] Hasmizam, R.M., Ahmad-Fauzi, M.N., Mohamed, A.R. and Sreekantan, S., 2014. Effect of calcination temperature on the morphological and phase structure of hydrothermally synthesized copper ion doped TiO2 nanotubes. Advanced Materials Research, 1024, pp.7-10.
[18] Ma, L., Fang, Z., Duan, J., Li, J., Zhu, K., Jiang, Y., Ji, B. and Yang, Z., 2024. Mesoporous TiO2@ g-C3N4 nanostructure-enhanced photocatalytic degradation of tetracycline under full-spectrum sunlight. Molecules, 29(24), p.5981.
[19] Cao, X., Tao, J., Xiao, X. and Nan, J., 2018. Hydrothermal-assisted synthesis of the multi-element-doped TiO2 micro/nanostructures and their photocatalytic reactivity for the degradation of tetracycline hydrochloride under the visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 364, pp.202-207.
[20] Romanovska, N., Manoryk, P., Selyshchev, O., Yaremov, P., Shylzshenko, O., Terebilenko, A., Shcherbakov, S. and Zahn, D.R.T., 2020. Influence of calcination temperature on structural-dimensional characteristics of C, S-doped TiO2 nanostructures and their photocatalytic activity in the ceftazidime and doxycycline photodegradation processes. Ukrainian Chemistry Journal, 86, pp.95-119.
[21] Sangchay, W., 2013. Effect of calcinations temperature on the structural and photocatalytic activity of TiO2 powders prepared by sol-gel method. Advanced Materials Research, 626, pp.329-333.
[22] Mozia, S., 2008. Effect of calcination temperature on photocatalytic activity of TiO2 Photodecomposition of mono-and polyazo dyes in water. Polish Journal of Chemical Technology, 10(3), pp.42-49.
[23] Yang, S., Ren, B., Chen, S., Liu, S., Zhang, Y. and Sun, Y., 2023. Influence of calcination temperature of TiO2 nanowires via hydrothermal method for photocatalytic degradation. Digest Journal of Nanomaterials and Biostructures, 18, pp.47-54.
[24] Fan, J., Zhao, L., Yu, J. and Liu, G., 2012. The effect of calcination temperature on the microstructure and photocatalytic activity of TiO2-based composite nanotubes prepared by an in situ template dissolution method. Nanoscale, 4(20), pp.6597-6603.
[25] Yang, J., Liu, Z., Wang, Y. and Tang, X., 2020. Construction of a rod-like Bi2O4 modified porous gC3N4 nanosheets heterojunction photocatalyst for the degradation of tetracycline. New Journal of Chemistry, 44(23), pp.9725-9735.
[26] Elbushra, H., Ahmed, M., Wardi, H. and Eassa, N., 2018. Synthesis and characterization of TiO2 using sol-gel method at different annealing temperatures. MRS Advances, 3(42-43), pp.2527-2535.
[27] Han, J.Y. and Bark, C.W., 2014. Influence of calcination temperature on the structure and optical properties of Bi3.25La0.75Ti3O12 powders. Journal of the Korean Physical Society, 65, pp.216-221.
[28] Yihunie, M.T., 2023. Effect of temperature sintering on grain growth and optical properties of TiO2 nanoparticles. Journal of Nanomaterials, 2023(1), p.3098452.
[29] Byrne, C., Fagan, R., Hinder, S., McCormack, D.E. and Pillai, S.C., 2016. New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts. RSC advances, 6, pp.95232-95238.
[30] Manikandan, K., JafarAhamed, A. and Brahmanandhan, G., 2017. Synthesis, structural and optical characterization of TiO2 nanoparticles and its assessment to cytotoxicity activity. Journal of Environmental Nanotechnology, 6(3), pp.94-102.
[31] Mishra, V., Warshi, M.K., Sati, A., Kumar, A., Mishra, V., Kumar, R. and Sagdeo, P.R., 2019. Investigation of temperature-dependent optical properties of TiO2 using diffuse reflectance spectroscopy. SN Applied Sciences, 1, p.241.
[32] Li, W., Liang, R., Hu, A., Huang, Z. and Zhou, Y.N., 2014. Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC advances, 4, pp.36959-36966.
[33] Qin, Y., Li, Y., Tian, Z., Wu, Y. and Cui, Y., 2016. Efficiently Visible-light driven photoelectrocatalytic oxidation of As (III) at low positive biasing using Pt/TiO2 nanotube electrode. Nanoscale research letters, 11, p.32.
[34] Guo, Z., Prezhdo, O.V., Hou, T., Chen, X., Lee, S.T. and Li, Y., 2014. Fast energy relaxation by trap states decreases electron mobility in TiO2 nanotubes: time-domain Ab initio analysis. The Journal of Physical Chemistry Letters, 5(10), pp.1642-1647.
[35] Souza, D.R., Neves, J.V.S., França, Y.K. and Malheiro, W.C., 2021. TiO2 synthesis by the Pechini’s method and application for diclofenac photodegradation. Photochemistry and Photobiology, 97(1), pp.32-39.
[36] Abbas, M., 2020. Experimental investigation of titanium dioxide as an adsorbent for removal of Congo red from aqueous solution, equilibrium and kinetics modeling. Journal of Water Reuse and Desalination, 10(3), pp.251-266.
[37] Parrino, F., De Pasquale, C. and Palmisano, L., 2019. Influence of surface‐related phenomena on mechanism, selectivity, and conversion of TiO2‐induced photocatalytic reactions. ChemSusChem, 12(3), pp.589-602.
[38] Bouafıa-Cherguı, S., Zemmourı, H., Chabanı, M. and Bensmaılı, A., 2016. TiO2-photocatalyzed degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction. Desalination and Water Treatment, 57(35), pp. 16670-16677.
[39] Galedari, M., Ghazi, M.M. and Mirmasoomi, S.R., 2019. Photocatalytic process for the tetracycline removal under visible light: Presenting a degradation model and optimization using response surface methodology (RSM). Chemical Engineering Research and Design, 145, pp.323-333.
[40] Li, W., Ding, H., Ji, H., Dai, W., Guo, J. and Du, G., 2018. Photocatalytic degradation of tetracycline hydrochloride via a CdS-TiO2 heterostructure composite under visible light irradiation. Nanomaterials, 8(6), p.415.
[41] Phromma, S., Wutikhun, T., Kasamechonchung, P., Eksangsri, T. and Sapcharoenkun, C., 2020. Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Applied Sciences,10(3), p.993.
[42] Collins-Martínez, V., Ortiz, A.L. and Elguézabal, A.A., 2007. Influence of the anatase/rutile ratio on the TiO2 photocatalytic activity for the photodegradation of light hydrocarbons. International Journal of Chemical Reactor Engineering, 5(1), p.92.
[43] Nasseh, N., Barikbin, B. and Taghavi, L., 2020. Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: Efficiency, stability, kinetic and pathway study. Environmental Technology & Innovation, 20, p.101035.
[44] Dona, J., Garriga, C., Arana, J., Pérez, J., Colon, G., Macías, M. and
Navio, J.A., 2007. The effect of dosage on the photocatalytic degradation of organic pollutants.
Research on Chemical Intermediates, 33, pp.351-358.
[45] Zhu, X., Wang, Y. and Zhou, D., 2014. TiO2 photocatalytic degradation of tetracycline as affected by a series of environmental factors. Journal of soils and sediments, 14, pp.1350-1358.
[46] Zhenhai, W., Zikai, Z., Sen, W. and Zhi, F., 2024. Enhanced degradation of tetracycline by gas-liquid discharge plasma coupled with g-C3N4/TiO2. Plasma Science and Technology, 26, p.094007.
[47] Zhang, J., Zhang, S., Bian, X., Yin, Y., Huang, W., Liu, C., Liang, X. and Li, F., 2024. High efficiency removal performance of tetracycline by magnetic CoFe2O4/NaBiO3 photocatalytic synergistic persulfate technology. Molecules, 29(17), p.4055.
[48] Hasham Firooz, M., Naderi, A., Moradi, M. and Kalantary, R.R., 2024. Enhanced tetracycline degradation with TiO2/natural pyrite S-scheme photocatalyst. Scientific Reports, 14, p.4954.
[49] Oluwole, A.O. and Olatunji, O.S., 2022. Photocatalytic degradation of tetracycline in aqueous systems under visible light irridiation using needle-like SnO2 nanoparticles anchored on exfoliated g-C3N4. Environmental Sciences Europe, 34, p.5.
[50] Hu, M., Chen, W. and Wang, J., 2024. Photocatalytic degradation of tetracycline by La-Fe Co-doped SrTiO3/TiO2 composites: performance and mechanism study. Water, 16(2), p.210.
[51] Zhu, K., Ma, L., Duan, J., Fang, Z. and Yang, Z., 2025. Photocatalytic degradation of tetracycline hydrochloride using TiO2/CdS on nickel foam under visible light and RSM–BBD optimization. Catalysts, 15(2), p.113.
[52] Ma, Y., Peng, Q., Sun, M., Zuo, N., Mominou, N., Li, S.,
Jing, C. and Wang, L., 2022. Photocatalytic oxidation degradation of tetracycline over La/Co@ TiO2 nanospheres under visible light. Environmental Research, 215(2), p.114297.
[53] Chen, X. and Mao, S.S., 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews, 107(7), pp.2891-2959.
[54] Diebold, U., 2003. The surface science of titanium dioxide. Surface science reports, 48(5-8), pp.53-229.
[55] Nosaka, Y. and Nosaka, A.Y., 2017. Generation and detection of reactive oxygen species in photocatalysis. Chemical reviews, 117(17), pp.11302-11336.
[56] Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A. and Sokol, A.A., 2013. Band alignment of rutile and anatase TiO2. Nature materials, 12, pp.798-801.