Recyclable Ag-TiO₂ SERS Substrates Fabricated via Plasma Jet Printing

Document Type : Original Article

Authors

1 Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

2 Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

3 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), Box 14155-1339, Tehran, Iran

Abstract

Recyclable surface-enhanced Raman scattering (SERS) substrates are important for real-world use because they can be used multiple times and are affordable. In this study, we developed a simple and low-cost method for fabricating recyclable SERS substrates by depositing silver nanoparticles onto TiO₂ nanostructures using an atmospheric pressure plasma jet without the need for chemical reducing or stabilizing agents. TiO₂ nanoparticles were synthesized via a sol-gel process and drop-cast onto glass substrates, followed by silver nanoparticle deposition through plasma jet printing. Structural analyses using XRD and FESEM confirmed the formation of anatase-phase TiO₂ and spherical Ag nanoparticles with tunable density. The SERS activity was optimized at a 60 s deposition time, and the substrates demonstrated strong plasmonic response and excellent reusability over five UV-assisted photocatalytic cleaning cycles using Rhodamine B and Methylene Blue. The substrates maintained over 80% of their initial Raman signal intensity, with no cross-contamination observed between analytes.  These results show that the Ag-TiO₂ substrates are very sensitive, stable, and can be reused, making them a practical option for real-world SERS applications.

Keywords

Main Subjects


[1]    Xu, X., Li, H., Hasan, D., Ruoff, R.S., Wang, A.X. and Fan, D.L., 2013. Near‐field enhanced plasmonic‐magnetic bifunctional nanotubes for single cell bioanalysis. Advanced Functional Materials23(35), pp.4332-4338.
[2]    Blackie, E.J., Le Ru, E.C. and Etchegoin, P.G., 2009. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. Journal of the American Chemical Society131(40), pp.14466-14472.
[3]    Le Ru, E.C., Blackie, E., Meyer, M. and Etchegoin, P.G., 2007. Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C111(37), pp.13794-13803.
[4]    Nie, S. and Emory, S.R., 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science275(5303), pp.1102-1106.
[5]    Le Ru, E.C., Meyer, M. and Etchegoin, P.G., 2006. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. The journal of physical chemistry B110(4), pp.1944-1948.
[6]    Durmanov, N.N., Guliev, R.R., Eremenko, A.V., Boginskaya, I.A., Ryzhikov, I.A., Trifonova, E.A., Putlyaev, E.V., Mukhin, A.N., Kalnov, S.L., Balandina, M.V. and Tkachuk, A.P., 2018. Non-labeled selective virus detection with novel SERS-active porous silver nanofilms fabricated by Electron Beam Physical Vapor Deposition. Sensors and Actuators B: Chemical257, pp.37-47.
[7]    Chen, S., Liu, B., Zhang, X., Mo, Y., Chen, F., Shi, H., Zhang, W., Hu, C. and Chen, J., 2018. Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate. Electrochimica Acta274, pp.242-249.
[8]    Kim, S.J., Hwang, J.S., Park, J.E., Yang, M. and Kim, S., 2021. Exploring SERS from complex patterns fabricated by multi-exposure laser interference lithography. Nanotechnology32(31), p.315303.
[9]    Wu, P.F., Fan, X.Y., Xi, H.Y., Pan, N., qian Shi, Z., You, T.T., Gao, Y.K. and Yin, P.G., 2022. Multifunctional self-assembled gold nanorod monolayer/Ti3C2Tx nanocomposites based on interfacial electrostatic for highly sensitive SERS detection of organic dyes and adenine. Journal of Alloys and Compounds920, p.165978.
[10]  Mekhilef, S., Saidur, R. and Kamalisarvestani, M., 2012. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and sustainable energy reviews16(5), pp.2920-2925.
[11]  Liu, H., Yang, L. and Liu, J., 2016. Three-dimensional SERS hot spots for chemical sensing: Towards developing a practical analyzer. TrAC Trends in Analytical Chemistry80, pp.364-372.
[12]  Liu, L.W., Zhou, Q.W., Zeng, Z.Q., Jin, M.L., Zhou, G.F., Zhan, R.Z., Chen, H.J., Gao, X.S., Lu, X.B., Senz, S. and Zhang, Z., 2016. Induced SERS activity in Ag@ SiO2/Ag core‐shell nanosphere arrays with tunable interior insulator. Journal of Raman Spectroscopy47(10), pp.1200-1206.
[13]  Huang, Y., Xu, H., Yang, H., Lin, Y., Liu, H. and Tong, Y., 2018. Efficient charges separation using advanced BiOI-based hollow spheres decorated with palladium and manganese dioxide nanoparticles. ACS Sustainable Chemistry & Engineering6(2), pp.2751-2757.
[14]  Shariat, M., Karimipour, M. and Molaei, M., 2019. Influence of ambient gas on the optical properties of CdS quantum dots prepared by plasma-liquid interactions. Journal of Luminescence207, pp.282-287.
[15]  Hong, J., Yick, S., Chow, E., Murdock, A., Fang, J., Seo, D.H., Wolff, A., Han, Z., Van Der Laan, T., Bendavid, A. and Ostrikov, K.K., 2019. Direct plasma printing of nano-gold from an inorganic precursor. Journal of Materials Chemistry C7(21), pp.6369-6374.
[16]  Bajpai, A. and Sharma, R., 2020. Atmospheric pressure plasma jet: A complete tool for surface enhanced Raman spectroscopy substrates preparation. Vacuum172, p.109033.
[17]  Gandhiraman, R.P., Singh, E., Diaz-Cartagena, D.C., Nordlund, D., Koehne, J. and Meyyappan, M., 2016. Plasma jet printing for flexible substrates. Applied Physics Letters108(12).
[18]  Noeske, M., Degenhardt, J., Strudthoff, S. and Lommatzsch, U., 2004. Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion. International journal of adhesion and adhesives24(2), pp.171-177.
[19]  Stark, R.H. and Schoenbach, K.H., 1999. Direct current glow discharges in atmospheric air. Applied Physics Letters74(25), pp.3770-3772.
[20]  Hong, Y.C. and Uhm, H.S., 2006. Microplasma jet at atmospheric pressure. Applied physics letters89(22).
[21]  Shariat, M., 2023. Plasma jet printing of silver nanoparticles on polyester fabric as a surface-enhanced Raman scattering substrate. Optik277, p.170698.
[22]  Prakash, J., 2019. Fundamentals and applications of recyclable SERS substrates. International Reviews in Physical Chemistry38(2), pp.201-242.
[23]  Das, S., Saxena, K., Goswami, L.P., Gayathri, J. and Mehta, D.S., 2022. Mesoporous Ag–TiO2 based nanocage like structure as sensitive and recyclable low-cost SERS substrate for biosensing applications. Optical Materials125, p.111994.
[24]  Yang, W., Tang, J., Ou, Q., Yan, X., Liu, L. and Liu, Y., 2021. Recyclable Ag-deposited TiO2 SERS substrate for ultrasensitive malachite green detection. ACS omega6(41), pp.27271-27278.
[25]  Bright Ankudze, A.P. and Pakkanen, T.T., 2019. Ultrasensitive and recyclable superstructure of AueSiO2@ Ag wire for surface-enhanced Raman scattering detection of thiocyanate in urine and human serum. Analytica Chimica Acta1049, p.179e187.
[26]  Deng, C.Y., Zhang, G.L., Zou, B., Shi, H.L., Liang, Y.J., Li, Y.C., Fu, J.X. and Wang, W.Z., 2013. TiO2/Ag composite nanowires for a recyclable surface enhanced Raman scattering substrate. Chinese Physics B22(10), p.106102.
[27]  Du, J. and Jing, C., 2011. Preparation of Fe3O4@ Ag SERS substrate and its application in environmental Cr (VI) analysis. Journal of Colloid and Interface Science358(1), pp.54-61.
[28]  Fang, H., Zhang, C.X., Liu, L., Zhao, Y.M. and Xu, H.J., 2015. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering. Biosensors and Bioelectronics64, pp.434-441.
[29]  Ge, F., Chen, Y., Liu, A., Guang, S. and Cai, Z., 2019. Flexible and recyclable SERS substrate fabricated by decorated TiO2 film with Ag NPs on the cotton fabric. Cellulose26(4), pp.2689-2697.
[30]  Kandjani, A.E., Mohammadtaheri, M., Thakkar, A., Bhargava, S.K. and Bansal, V., 2014. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable ‘hot-spots’ for highly reproducible molecular sensing. Journal of colloid and interface science436, pp.251-257.
[31]  Kandjani, A.E., Mohammadtaheri, M., Thakkar, A., Bhargava, S.K. and Bansal, V., 2014. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable ‘hot-spots’ for highly reproducible molecular sensing. Journal of colloid and interface science436, pp.251-257.
[32]  Li, D., Li, D.W., Li, Y., Fossey, J.S. and Long, Y.T., 2010. Cyclic electroplating and stripping of silver on Au@ SiO 2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering. Journal of Materials Chemistry20(18), pp.3688-3693.
[33]  Liu, X.Y., Huang, J.A., Yang, B., Zhang, X.J. and Zhu, Y.Y., 2015. Highly reproducible SERS substrate based on polarization-free Ag nanoparticles decorated SiO2/Si core-shell nanowires array. Aip Advances5(5).
[34]  Liu, Y., Xu, C., Lu, J., Zhu, Z., Zhu, Q., Manohari, A.G. and Shi, Z., 2018. Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates. Applied Surface Science427, pp.830-836.
[35]  Sinha, G., Depero, L.E. and Alessandri, I., 2011. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS applied materials & interfaces3(7), pp.2557-2563.
[36]  Weng, X., Feng, Z., Guo, Y., Feng, J.J., Hudson, S.P., Zheng, J., Ruan, Y., Laffir, F. and Pita, I., 2016. Recyclable SERS substrates based on Fe 2 O 3–Ag hybrid hollow microspheres with crumpled surfaces. New Journal of Chemistry40(6), pp.5238-5244.
[37]  Xi, G., Yue, B., Cao, J. and Ye, J., 2011. Fe3O4/WO3 hierarchical core–shell structure: high‐performance and recyclable visible‐light photocatalysis. Chemistry–A European Journal17(18), pp.5145-5154.
[38]  Xu, S.C., Zhang, Y.X., Luo, Y.Y., Wang, S., Ding, H.L., Xu, J.M. and Li, G.H., 2013. Ag-decorated TiO 2 nanograss for 3D SERS-active substrate with visible light self-cleaning and reactivation. Analyst138(16), pp.4519-4525.
[39]  Yan, X., Wang, L., Qi, D., Lei, J., Shen, B., Sen, T. and Zhang, J., 2014. Sensitive and easily recyclable plasmonic SERS substrate based on Ag nanowires in mesoporous silica. Rsc Advances4(101), pp.57743-57748.
[40]  Yang, J.L., Xu, J., Ren, H., Sun, L., Xu, Q.C., Zhang, H., Li, J.F. and Tian, Z.Q., 2017. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@ CdS core–shell nanocomposites. Nanoscale9(19), pp.6254-6258.
[41]  Yang, X., Zhong, H., Zhu, Y., Shen, J. and Li, C., 2013. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Dalton Transactions42(39), pp.14324-14330.
[42]  Zhai, Y., Zhai, J., Wang, Y., Guo, S., Ren, W. and Dong, S., 2009. Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering. The Journal of Physical Chemistry C113(17), pp.7009-7014.
[43]  Zhang, C.X., Liu, L., Jun Yin, H., Fang, H., Mei Zhao, Y., Jian Bi, C. and Jun Xu, H., 2014. Recyclable surface-enhanced Raman scattering template based on nanoporous gold film/Si nanowire arrays. Applied Physics Letters105(1).
[44]  Zhang, M., Zhao, A., Wang, D. and Sun, H., 2015. Hierarchically assembled NiCo@ SiO 2@ Ag magnetic core–shell microspheres as highly efficient and recyclable 3D SERS substrates. Analyst140(2), pp.440-448.
[45]  Zhou, Y., Chen, J., Zhang, L. and Yang, L., 2012. Multifunctional TiO2‐Coated Ag Nanowire Arrays as Recyclable SERS Substrates for the Detection of Organic Pollutants. European Journal of Inorganic Chemistry2012(19), pp.3176-3182.
[46]  Zou, X., Silva, R., Huang, X., Al-Sharab, J.F. and Asefa, T., 2013. A self-cleaning porous TiO 2–Ag core–shell nanocomposite material for surface-enhanced Raman scattering. Chemical Communications49(4), pp.382-384.
[47]  Carp, O., Huisman, C.L. and Reller, A., 2004. Photoinduced reactivity of titanium dioxide. Progress in solid state chemistry32(1-2), pp.33-177.
[48]  Ibhadon, A.O. and Fitzpatrick, P., 2013. Heterogeneous photocatalysis: recent advances and applications. Catalysts3(1), pp.189-218.
[49]  Hołub, M., 2012. On the measurement of plasma power in atmospheric pressure DBD plasma reactors. International Journal of Applied Electromagnetics and Mechanics39(1-4), pp.81-87.
[50]  Wu, H.Y., Lin, H.C., Liu, Y.H., Chen, K.L., Wang, Y.H., Sun, Y.S. and Hsu, J.C., 2022. Highly sensitive, robust, and recyclable TiO2/AgNP substrate for SERS detection. Molecules27(19), p.6755.