[1] Wederni, A., Daza, J., Ben Mbarek, W., Saurina, J., Escoda, L. and Suñol, J.-J., 2024. Crystal Structure and Properties of Heusler Alloys: A Comprehensive Review. Metals. 14(6), pp. 688.
[2] Chernov, E.D. and Lukoyanov, A.V., 2023. Effect of Electron Correlations on the Electronic Structure and Magnetic Properties of the Full Heusler Alloy Mn2NiAl. Magnetochemistry. 9(7).
[3] Tavares, S., Yang, K. and Meyers, M.A., 2023. Heusler alloys: Past, properties, new alloys, and prospects. Progress in Materials Science. 132, pp. 101017.
[4] Berri, S., 2016. Electronic structure and magnetic properties of Co2TaAl from ab initio calculations. J. Sci.: Adv. Mater. Devices. 1(3), pp. 286-289.
[5] Abada, A., Amara, K., Hiadsi, S. and Amrani, B., 2015. First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe. J. Magn. Magn. Mater. 388(0), pp. 59-67.
[6] Saber, N., Fadil, Z., Mhirech, A., Kabouchi, B., Bahmad L. and O., B.W., 2021. Magnetic Properties of the Heusler RuMn (= Nb, Ta or V) Compounds: Monte Carlo Simulations. arXiv. 2109.01708.
[7] Benichou, B., Bouchenafa, H., Nabi, Z. and Bouabdallah, B., 2022. Computational study of structural stability, elastic, electronic, magnetic and thermodynamic properties of the Rh2-based full-Heusler compounds: Rh2MnZ (Z = Sn, Pb, Tl) by FP-LAPW method. Revista Mexicana de Física. 68(6 Nov-Dec), pp. 060502 1-12.
[8] Wu, S.-C., Fecher, G.H., Shahab Naghavi, S. and Felser, C., 2018. Elastic properties and stability of Heusler compounds: Cubic Co2YZ compounds with L21 structure. J. Appl. Phys. 125(8).
[9] Meinert, M., Schmalhorst, J.M. and Reiss, G., 2011. Ab initio prediction of ferrimagnetism, exchange interactions and Curie temperatures in Mn 2 TiZ Heusler compounds. J. Phys.: Condens. Matter. 23(3), pp. 036001.
[10] Felser, C., Wollmann, L., Chadov, S., Fecher, G.H. and Parkin, S.S.P., 2015. Basics and prospective of magnetic Heusler compounds. APL Mater. 3(4), pp. 041518.
[11] Zareii, S.M., Arabi, H. and Sarhaddi, R., 2012. Effect of Si substitution on electronic structure and magnetic properties of Heusler compounds Co2TiAl1−xSix. Physica B. 407(17), pp. 3339-3346.
[12] Liu, L., Hu, L., Liu, S., Xiong, J., Liao, Q. and Wen, Y., 2021. First-principles investigations on the ground-state bulk properties and lattice constant dependent half-metallic ferrimagnetism of MnNbSi full-Heusler compound. International Journal of Quantum Chemistry. 121(7), pp. e26566.
[13] Iram, N., Sharma, R., Ahmed, J., Almeer, R., Kumar, A. and Abbas, Z., 2025. Exploring the physical, magnetic, opto-spintronics and thermoelectric properties of Fe2ZrAs Heusler Alloy through DFT study. Journal of Physics and Chemistry of Solids. 196, pp. 112368.
[14] Hu, X., 2012. Half-Metallic Antiferromagnet as a Prospective Material for Spintronics. Advanced Materials. 24(2), pp. 294-298.
[15] Jayashire, R., Karthik, G., Raja, M.M., Sampath, V. and Ravichandran, K., 2024. Structural and Magnetic Studies on Mn2TiSi Heusler Alloy for Spintronics Applications. J. Supercond. Novel Magn. 37(1), pp. 117-127.
[16] Mohammad Abadi, A.A., Forozani, G., Baizaee, S.M. and Gharaati, A., 2019. Structural, electronic and magnetic properties of CoZrIrSi quaternary Heusler alloy: First-principles study. Journal of Alloys and Compounds, pp. 152449.
[17] Al-Douri, Y. and and Ameri, M., 2025. Physical studies of spintronics-based Heusler alloys. Critical Reviews in Solid State and Materials Sciences. 50(2), pp. 189-238.
[18] Kervan, S. and Kervan, N., 2013. Half-metallic properties of the CuHg2Ti-type Mn2ZnSi full-Heusler compound. Curr. Appl Phys. 13(1), pp. 80-83.
[19] Wenyong, Z., Yunlong, J., Ralph, S., Parashu, K., Xingzhong, L., Tingyong, C., Gejian, Z., Dongrin, K., Shah, V. and David, J.S., 2018. Mn2CrGa-based Heusler alloys with low net moment and high spin polarization. J. Phys. D: Appl. Phys. 51(25), pp. 255001.
[20] Amirabadizadeh, A., Abbas Emami, S.A., Nourbakhsh, Z., Alavi Sadr, S.M. and Baizaee, S.M., 2016. The Effect of Substitution of As for Ga on the Topological Phase and Structural, Electronic and Magnetic Properties of Mn 2 ZrGa Heusler Alloy. J. Supercond. Novel Magn. 30(4), pp. 1035-1049.
[21] Abbas Emami, S.A., Amirabadizadeh, A., Nourbakhsh, Z., Baizaee, S.M. and Alavi Sadr, S.M., 2018. Study of the Structural, Electronic, Magnetic, and Optical Properties of Mn2ZrGa Full-Heusler Alloy: First-Principles Calculations. J. Supercond. Novel Magn. 31(1), pp. 127-134.
[22] Jiang, D., Ye, Y., Liu, H., Gou, Q., Donglan, W., Wen, Y. and Liu, L., First-principles calculations of electronic, acoustic and anharmonic properties of Mn 2 RuZ (Z = Si and Ge) Heusler compounds. Vol. 458. 2018.
[23] Guermit, Y., Drief, M., Lantri, T., Tagrerout, A., Rached, H., Benkhettou, N.-e. and Rached, D., 2020. Theoretical investigation of magnetic, electronic, thermoelectric and thermodynamic properties of Fe2TaZ (Z= B, In) compounds by GGA and GGA+U approaches. Computational Condensed Matter. 22, pp. e00438.
[24] Shakeel Ahmad, K. and Dinesh, C.G., 2017. DFT investigations on mechanical stability, electronic structure and magnetism in Co 2 TaZ (Z = Al, Ga, In) heusler alloys. Semicond. Sci. Technol. 32(12), pp. 125019.
[25] Gurunani, B., Ghosh, S. and Gupta, D.C., 2024. Comprehensive investigation of half Heusler alloy: Unveiling structural, electronic, magnetic, mechanical, thermodynamic, and transport properties. Intermetallics. 170, pp. 108311.
[26] Özdogan, K., Galanakis, I., Şaşioglu, E. and Aktaş, B., 2006. Search for half-metallic ferrimagnetism in V-based Heusler alloys Mn 2 VZ (Z = Al, Ga, In, Si, Ge, Sn). J. Phys.: Condens. Matter. 18(10), pp. 2905.
[27] Anjami, A., Boochani, A., Elahi, S.M. and Akbari, H., 2017. Ab-initio study of mechanical, half-metallic and optical properties of Mn2ZrX (X=Ge, Si) compounds. Results Phys. 7(Supplement C), pp. 3522-3529.
[28] Skaftouros, S., Özdoğan, K., Şaşıoğlu, E. and Galanakis, I., 2013. Generalized Slater-Pauling rule for the inverse Heusler compounds. Phys. Rev. B: Condens. Matter. 87(2), pp. 024420.
[29] Boumia, L., Dahmane, F., Doumi, B., Rai, D.P., Khandy, S.A., Khachai, H., Meradji, H., Reshak, A.H. and Khenata, R., 2019. Structural, electronic and magnetic properties of new full Heusler alloys Rh2CrZ (Z = Al, Ga, In): First-principles calculations. Chinese Journal of Physics. 59, pp. 281-290.
[30] Alrahamneh, M.J., Khalifeh, J.M. and Mousa, A.A., 2020. Ab-initio calculations of the structural, mechanical, electronic, magnetic and thermoelectric properties of Zr2RhX (X= Ga, In) Heusler alloys. Physica B. 581, pp. 411941.
[31] Kervan, N. and Kervan, S., 2012. A first-principle study of half-metallic ferrimagnetism in the Ti2CoGa Heusler compound. J. Magn. Magn. Mater. 324(4), pp. 645-648.
[32] Slater, J.C., 1936. The Ferromagnetism of Nickel. II. Temperature Effects. Phys. Rev. 49(12), pp. 931-937.
[33] Pauling, L., 1938. The Nature of the Interatomic Forces in Metals. Phys. Rev. 54(11), pp. 899-904.
[34] Semari, F., Dahmane, F., Baki, N., Al-Douri, Y., Akbudak, S., Uğur, G., Uğur, Ş., Bouhemadou, A., Khenata, R. and Voon, C., First-principle calculations of structural, electronic and magnetic investigations of Mn 2 RuGe 1-x Sn x quaternary Heusler alloys. Vol. 56. 2018.
[35] Jum'h, I., essaoud, S., Baaziz, H., Zoulikha, C. and Telfah, A., 2019. Electronic and Magnetic Structure and Elastic and Thermal Properties of Mn2-Based Full Heusler Alloys. J. Supercond. Novel Magn. 32.
[36] Amirabadizadeh, A., Emami, S.A.A., Nourbakhsh, Z., Sadr, S.M.A. and Baizaee, S.M., 2017. The Structural, Electronic, Magnetic, and Optical Properties of Mn2ZrGa1−xGex Heusler Alloys: First-Principles Calculations. J. Supercond. Novel Magn. 31(5), pp. 1515-1525.
[37] Benea, D., Gavrea, R., Coldea, M., Isnard, O. and Pop, V., 2019. Half-metallic compensated ferrimagnetism in the Mn-Co-V-Al Heusler alloys. J. Magn. Magn. Mater. 475, pp. 229-233.
[38] Ishida, S., Asano, S. and Ishida, J., 1984. Bandstructures and Hyperfine Fields of Heusler Alloys. J. Phys. Soc. Jpn. 53(8), pp. 2718-2725.
[39] Luo, H., Zhu, Z., Liu, G., Xu, S., Wu, G., Liu, H., Qu, J. and Li, Y., 2008. Prediction of half-metallic properties for the Heusler alloys Mn2CrZ (Z=Al, Ga, Si, Ge, Sb): A first-principles study. J. Magn. Magn. Mater. 320(3–4), pp. 421-428.
[40] Li, S.T., Ren, Z., Zhang, X.H. and Cao, C.M., 2009. Electronic structure and magnetism of Mn2CuAl: A first-principles study. Physica B. 404(14–15), pp. 1965-1968.
[41] Wei, X.-P., Hu, X.-R., Mao, G.-Y., Chu, S.-B., Lei, T., Hu, L.-B. and Deng, J.-B., 2010. Half-metallic ferrimagnetism in Mn2CuGe. J. Magn. Magn. Mater. 322(20), pp. 3204-3207.
[42] Wei, X.-P., Hu, X.-R., Chu, S.-B., Mao, G.-Y., Hu, L.-B., Lei, T. and Deng, J.-B., 2011. A first principles study on the full-Heusler compound Mn2CuSi. Physica B. 406(5), pp. 1139-1142.
[43] Wei, X.-P., Hu, X.-R., Liu, B., Lei, Y., Deng, H., Yang, M.-K. and Deng, J.-B., 2011. Electronic structure and magnetism in full-Heusler compound Mn2ZnGe. J. Magn. Magn. Mater. 323(12), pp. 1606-1610.
[44] Yang, L., Liu, B., Meng, F., Liu, H., Luo, H., Liu, E., Wang, W. and Wu, G., 2015. Magnetic properties of Heusler alloy Mn2RuGe and Mn2RuGa ribbons. J. Magn. Magn. Mater. 379(0), pp. 1-5.
[45] Bensaid, D., Hellal, T., Ameri, M., Azzaz, Y., Doumi, B., Al-Douri, Y., Abderrahim, B. and Benzoudji, F., 2016. First-Principle Investigation of Structural, Electronic and Magnetic Properties in Mn2RhZ (Z = Si, Ge, and Sn) Heusler Alloys. J. Supercond. Novel Magn. 29(7), pp. 1843-1850.
[46] Ghosh, S. and Ghosh, S., 2019. Systematic understanding of half-metallicity of ternary compounds in Heusler and Inverse Heusler structures with 3d and 4d elements. Physica Scripta. 94(12), pp. 125001.
[47] Piyasin, P., Pinitsoontorn, S., Sauerschnig, P., Imasato, K. and Ohta, M., 2024. Power generation from n-type NbCo1−xNixSn and p-type NbFe1−xMnxSb ternary half-Heusler compounds: from materials development to module fabrication. Journal of Materials Chemistry C. 12(34), pp. 13242-13254.
[48] Kervan, N., Kervan, S., Canko, O., Atiş, M. and Taşkın, F., 2016. Half-Metallic Ferrimagnetism in the Mn2NbAl Full-Heusler Compound: a First-Principles Study. J. Supercond. Novel Magn. 29(1), pp. 187-192.
[49] Sofi, S. and Gupta, D., 2020. Investigation of structural, elastic, thermophysical, magneto-electronic and transport properties of newly tailored Mn-based Heuslers: A DFT Study. International Journal of Quantum Chemistry. 120.
[50] Anisimov, V.I., Aryasetiawan, F. and Lichtenstein, A.I., 1997. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. Journal of Physics: Condensed Matter. 9(4), pp. 767-808.
[51] Stinshoff, R., Nayak, A.K., Fecher, G.H., Balke, B., Ouardi, S., Skourski, Y., Nakamura, T. and Felser, C., 2017. Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compound Phys. Rev. B: Condens. Matter. 95(6), pp. 060410.
[52] Schwarz, K., Blaha, P. and Madsen, G.K.H., 2002. Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1), pp. 71-76.
[53] Schwarz, K. and Blaha, P., 2003. Solid state calculations using WIEN2k. Computational Materials Science. 28(2), pp. 259-273.
[54] Monkhorst, H.J. and Pack, J.D., 1976. Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter. 13(12), pp. 5188-5192.
[55] Madsen, G.K.H. and Novák, P., 2005. Charge order in magnetite. An LDA+U study. Europhysics Letters. 69(5), pp. 777.
[56] Murnaghan, F.D., 1944. The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences of the United States of America. 30(9), pp. 244-247.
[57] Sharma, S. and Kumar, P., 2017. Investigation of electronic, magnetic and transport properties of full-Heusler alloys Fe2TiX (X = As and Sb). Chinese Journal of Physics. 55(5), pp. 1972-1980.
[58] Hem, C.K., Gerhard, H.F. and Claudia, F., 2007. Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D: Appl. Phys. 40(6), pp. 1507.
[59] Žutić, I., Fabian, J. and Sarma, S.D., 2004. Spintronics: Fundamentals and applications. Reviews of modern physics. 76(2), pp. 323.
[60] Eschrig, M., 2011. Spin-polarized supercurrents for spintronics. Physics Today. 64(1), pp. 43-49.
[61] Inomata, K., Naomichi, I., Nobuki, T., Ryogo, G., Satoshi, S., Marek, W. and and Jedryka, E., 2008. Highly spin-polarized materials and devices for spintronics∗. Science and Technology of Advanced Materials. 9(1), pp. 014101.
[62] Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Felser, C., Lin, H.-J. and Morais, J., 2005. Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B: Condens. Matter. 72(18), pp. 184434.
[63] Kübler, J., William, A.R. and Sommers, C.B., 1983. Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B: Condens. Matter. 28(4), pp. 1745-1755.