Investigation of Thermoelectric Properties of Chalcogenide Semiconductors, MgBS3(B = Hf, Zr): First Principle Approach

Document Type : Original Article

Author

School of Science and Technology, Pan-Atlantic University, Ibeju-Lekki, Lagos, Nigeria

10.22075/ppam.2025.36867.1132

Abstract

Chalcogenide crystals are used in many different industries, but most notably as energy-conversion thermoelectric materials. We have calculated the Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor, and figure of merit of MgBS3 (B = Hf, Zr) chalcogenide crystals using semiclassical Boltzmann theory and first-principles calculations. A Quantum Espresso program is used to determine the Fermi level and compute the electronic properties. The transport properties are then computed using the BoltzTraP algorithm. We first make our materials available to the public. We report on our first principle investigation of MgBS3 (B = Hf, Zr), a new class of ternary semiconductor alloys. The structural and elastic properties of these constituents demonstrate their low energy of formation and mechanical stability. In the valence band maximum, the observed electronic energy band gap data show a direct electronic transition including Hf-d states (B = Hf & Zr) along the Γ-symmetry direction, as well as mixed contributions from Mg-s states, Hf-d states, and Zr-d states. Furthermore, to assess the thermoelectric potential of pure MgHfS3 and MgZrS3, the temperature-dependent transport properties were examined. Among the simple measures employed were the "maximum" thermoelectric figure of merit, zT, power factor, Seebeck effect, and their anticipated thermal and electrical conductivity. It provided findings with improved zT values, higher PF, moderate Seebeck effect, and efficient thermal and electrical conductivity compared to the current state of bulk thermoelectric materials. Furthermore, we discover that it is highly improbable to get the necessary zT values for typical device applications by using several additional semiconductors, or chalcogenides perovskites, as described in our work. These results provide an excellent bulk chalcogenide database that is necessary for many potential applications in the renewable energy sector. 

Keywords

Main Subjects


[1]    Rahman, M.H., Chowdhury, E.H., Redwan, D.A. and Hong, S., 2021. Computational characterization of thermal and mechanical properties of single and bilayer germanene nanoribbon. Computational Materials Science, 190, p.110272.
[2]    Kalami, R. and Ketabi, S.A., 2023. Role of Linear Defects on the Electronic, Transport, and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons. Journal of Electronic Materials, pp.1-11.
[3]    Kalami, R. and Ketabi, S.A., 2023. Electronic and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays. Journal of Electronic Materials, 52(10), pp.6566-6577.
[4]    Tsukagoshi, K., Alphenaar, B.W, Ago, H.,1999. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature 401, 572.
[5]    Xiong, Z.H., Wu, D., Vardeny, Z.V., Shi, J., 2004. Giant magnetoresistance in organic spin-valves, Nature 427 821.
[6]    Dediu, V., Murgia, M., Matacotta, F. C., Taliani, C., Barbanera, S., 2002. Room temperature spin polarized injection in organic semiconductor, Solid State Commun. 122 181.
[7]    Shim, J.H., Raman, K.V., Park, Y.J., Santos, T.S., Miao, G.X., Satpati, B., Moodera, J.S., 2008. Large spin diffusion length in an amorphous organic semiconductor, Phys. Rev. Lett. 100, 226603.
[8]    Santos, T.S., Lee, J.S., Migdal, P., Lekshmi, I.C., Satpati, B., Moodera, J.S., 2007. Room temperature tunnel magnetoresistance and spin-polarized tunnelling through an organic semiconductor barrier, Phys. Rev. Lett. 98, 016601.
[9]    Ouyang, M., Awschalom, D.D., 2003. Coherent spin transfer between molecularly bridged quantum dots, Science ,301, 1074.
[10]  Petta, J.R., Slater, S.K., Ralph, D.C., 2004. Spin-dependent transport in molecular tunnel junctions, Phys. Rev. Lett. 93, 136601.
[11]  Sanvito, S., 2007. Memoirs of a spin, Nature Nanotechnology, 2, 204.
[12]  Ning, Z., Zhu, Y., Wang, J., Guo, H., 2008. Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions, Phys. Rev. Lett.100, 056803.
[13]  Bentien, A., Christensen, M., Bryan, J., Sanchez, A., Paschen, S., Steglich, F., Stucky, G.D., and Iversen, B.B. 2004., Phys. B, 69, 045107 (2004).
[14]  Shokri, A. and Salami, N., 2019. Thermoelectric properties in monolayer MoS2 nanoribbons with Rashba spin–orbit interaction. Journal of Materials Science, 54(1), pp.467-482.
[15]  Checkelsky, J.G. and Ong, N.P., 2009. Thermopower and Nernst effect in graphene in a magnetic field. Physical Review B, 80(8), p.081413.
[16]  Yan, Y., Liang, Q.F., Zhao, H., Wu, C.Q. and Li, B., 2012. Thermoelectric properties of one-dimensional graphene antidot arrays. Physics Letters A, 376(35), pp.2425-2429.
[17]  Domínguez-Adame, F., Martín-González, M., Sánchez, D. and Cantarero, A., 2019. Nanowires: A route to efficient thermoelectric devices. Physica E: Low-dimensional Systems and Nanostructures, 113, pp.213-225.
[18]  Kalami, R., & Ketabi, S. A. 2021. Spin-dependent thermoelectric properties of a magnetized zigzag graphene nanoribbon. Progress in Physics of Applied Materials, 1(1), 1-6.
[19]  Kalami, R., & Ketabi, S. A. 2023. Comparison of thermoelectric properties of armchair germanene nanoribbon and armchair germanene nanomesh. Progress in Physics of Applied Materials,3(2),169-176.
[20]  Zhang, K. B., Tan, S. H., Peng, X. F., & Long, M. Q. 2024. Electronic and thermoelectric properties in SnS-nanoribbon-based heterojunctions. Chinese Physics Letters, 41(9), 097301.
[21]  Song, T. T., Yang, N. X., Wang, R., Liao, H., Song, C. Y., & Cheng, X. Y. 2024. Enhanced thermoelectric performance of graphene p−n junction nanoribbon. Physica E: Low-dimensional Systems and Nanostructures, 164, 116057.
[22]  Nolas, G.S., Cohn, J.L., Slack, G.A., and Schujman, S.B., 1998. Appl. Phys. Lett. 73, 178.
[23]  May, A.F., Toberer, E.S., Saramat, A and Snyder, G.J., 2009. Phys. Rev. B, 80, 125205.
[24]  Christensen, M., Lock, N., Overgaard, J., and Iversen, B.B., 2006. J. Am. Chem. Soc. 128, 15657.
[25]  Sales, B.C., Mandrus, D., and Williams, R.K., 1996. Science, 272, 1325.
[26]  Rull-Bravo, M.; Moure, A.; Fernández, J.; Martín-González, M. Skutterudites as thermoelectric materials: 2015. Revisited. RSC Adv. 5, 41653–41667.
[27]  Tan, G.; Zhao, L.-D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149.
[28]  Pichanusakorn, P.; Kuang, Y.; Patel, C.; Tu, C.; Bandaru, P. 2012. Feasibility of enhancing the thermoelectric power factor in GaNx As1−x. Phys. Rev. B, 86, 085314.
[29]  Ouardi, S.; Fecher, G.H.; Felser, C.; Schwall, M.; Naghavi, S.S.; Gloskovskii, A.; Balke, B.; Hamrle, J.; Postava, K.; Pištora, J. 2012. Electronic structure and optical, mechanical, and transport properties of the pure, electron-doped, and hole-doped Heusler compound CoTiSb. Phys. Rev. B, 86, 045116.
[30]  Kim, H.; Kaviany, M. 2012. Effect of thermal disorder on high figure of merit in PbTe. Phys. Rev. B, 86, 045213.
[31]  Kerdsongpanya, S.; Alling, B.; Eklund, P. 2012. Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties. Phys. Rev. B, 86, 195140.
[32]  Hoat, D. 2022. Comparative study of structural, electronic, optical and thermoelectric properties of GaS bulk and monolayer. Philos. Mag. 99, 736–751.
[33]  Hoat, D.; Naseri, M.; Ponce-Perez, R.; Hieu, N.N.; Vu, T.V.; Rivas-Silva, J.; Cocoletzi, G.H. 2020. Reducing the electronic band gap of BN monolayer by coexistence of P (As)-doping and external electric field. Superlattices Microstruct. 137, 106357.
[34]  Naseri, M.; Hoat, D.2019. Prediction of 2D Li2X (X = Se, Te) monolayer semiconductors by first principles calculations. Phys. Lett. A, 383, 125992.
[35]  Hong, M.; Wang, Y.; Liu, W.; Matsumura, S.; Wang, H.; Zou, J.; Chen, Z.G. Arrays of planar vacancies in superior thermoelectric Ge1−x−yCdxBiyTe with band convergence. Adv. Energy Mater. 2018, 8, 1801837.
[36]  Tang, G.; Liu, J.; Zhang, J.; Li, D.; Rara, K.H.; Xu, R.; Lu, W.; Liu, J.; Zhang, Y.; Feng, Z. 2018. Realizing high thermoelectric performance below phase transition temperature in polycrystalline snse via lattice anharmonicity strengthening and strain engineering. ACS Appl. Mater. Interfaces, 10, 30558–30565.
[37] Gayner, C.; Kar, K.K. 2016. Recent advances in thermoelectric materials. Prog. Mater. Sci. 83, 330–382.
[38]   Ju, H.; Kim, M.; Kim, J. 2015. A facile fabrication of n-type Bi2Te3 nanowire/graphene layer by-layer hybrid structure and their improved thermoelectric performance. Chem. Eng. J., 102–112.
[39] Han, C.; Sun, Q.; Li, Z.; Dou, S.X. 2016. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater. 6, 1600498.
[40] Jeffery L. Gray, 2011. The physics of the solar cell, Handbook of photovoltaic science and engineering 2, 82–128.
[41] Mukesh Jain, edition, II-VI Semiconductor Compounds, World scientific, 1993.
[42] Liu, M.L.; Chen, I.W.; Huang, F.Q.; Chen, L.D. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv. Mater. 2009, 21, 3808–3812.
[43] Sevik, C.; Çagın, T. 2010. Abinitio study of thermoelectric transport properties of pure and doped quaternary compounds. Phys. Rev. B, 82, 045202.
[44] Ibáñez, M.; Zamani, R.; LaLonde, A.; Cadavid, D.; Li, W.; Shavel, A.; Arbiol, J.; Morante, J.R.; Gorsse, S.; Snyder, G.J. 2012. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J. Am. Chem. Soc, 134, 4060–4063.
[45] Zeier, W.G.; Heinrich, C.P.; Day, T.; Panithipongwut, C.; Kieslich, G.; Brunklaus, G.; Snyder, G.J.; Tremel, W. 2014. Bond strength dependent superionic phase transformation in the solid solution series Cu2ZnGeSe4−xSx. J. Mater. Chem. A, 2, 1790–1794.
[46] Navrátil, J.; Kucek, V.; Plecháˇcek, T.; Cernošková, E.; Laufek, F.; Drašar, C.; Knotek, P. 2014. Thermoelectric Properties of Cu2HgSnSe4 -Cu2HgSnTe4 Solid Solution. J. Electron. Mater.43, 3719–3725.
[47] Bekki, B.; Amara, K.; Marbouh, N.; Khelfaoui, F.; Benallou, Y.; Elkeurti, M.; Bentayeb, A. Theoretical study of structural, elastic and thermodynamic properties of Cu2MgSnX4 (X = S, Se and Te) quaternary compounds. Comput. Condens. Matter 2019, 18, e00339.
[48] Guin, S.N.; Chatterjee, A.; Biswas, K. Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping. RSC Adv. 2014, 4, 11811–11815.
[49] Li, D.; Qin, X.; Zou, T.; Zhang, J.; Ren, B.; Song, C.; Liu, Y.; Wang, L.; Xin, H.; Li, J. 2015. High thermoelectric properties for Sn-doped AgSbSe2. J. Alloys Compd. 635, 87–91.
[50] Balogun, R.O., Olopade, M.A., Oyebola, O.O., Adewoyin, A.D., 2021. First-principle calculations to investigate structural, electronic and optical properties of MgHfS3,Materials Science and Engineering: B, Volume 273,115405, ISSN 0921-5107,
[51] Oyebola Olusola Olurotimi, Belewu Fatai Damilola, Balogun Rilwan Oluwanishola, Adegboyega Anthony Babajide and Oyebode Daniel Oluwatimilehin, 2024. Exploring the Thermoelectric Potential of Trigonal MgS2: A Computational Investigation Using DFT and Boltzmann Transport Theory. Communication in Physical Sciences,11(2): 288-298
[52] Adegboyega, A.B, Olopade, M.A., Ogungbemi, K.I., Balogun, R.O., 2024. Electro-optical and thermoelectric properties of perovskite CsKAgBiX6(X=Cl,Br,I): A DFT study, Computational Condensed Matter,Volume 38,e00878,ISSN 2352-2143, https://doi.org/10.1016/j.cocom.2023.e00878.
[53] Lee, J.K.; Oh, M.-W.; Ryu, B.; Lee, J.E.; Kim, B.-S.; Min, B.-K.; Joo, S.-J.; Lee, H.-W.; Park, S.-D. 2017. Enhanced thermoelectric properties of AgSbTe2 obtained by controlling heterophases with Ce doping. Sci. Rep.7, 4496.
[54] Ching, W.-Y.; Rulis, P. Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals; Oxford University Press: Oxford, UK, 2012.
[55] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I. 2009. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 21, 395502.
[56] Hasan, S.; Adhikari, P.; Baral, K.; Ching, W.-Y. 2020. Conspicuous interatomic bonding in chalcogenide crystals and implications on electronic, optical, and elastic properties. AIP Adv,10, 075216.
[57] Hasan, S.; Baral, K.; Li, N.; Ching, W.-Y. 2021. Structural and physical properties of 99 complex bulk chalcogenides crystals using first-principles calculations. Sci. Rep, 11, 9921.
[58] Kresse, G.; Furthmüller, J. 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169.
[59] Dharmawardhana, C.; Bakare, M.; Misra, A.; Ching, W.Y. 2016. Nature of interatomic bonding in controlling the mechanical properties of calcium silicate hydrates. J. Am. Ceram. Soc. 99, 2120–2130.
[60] Adhikari, P.; Khaoulaf, R.; Ez-Zahraouy, H.; Ching, W.-Y. 2017. Complex interplay of interatomic bonding in a multi-component pyrophosphate crystal: K2Mg (H2P2O7 )2 H2O. R. Soc. Open Sci. 4, 170982.
[61] Poudel, L.; Tamerler, C.; Misra, A.; Ching, W.-Y. 2017. Atomic-Scale Quantification of Interfacial Binding between Peptides and Inorganic Crystals: The Case of Calcium Carbonate Binding Peptide on Aragonite. J. Phys. Chem. C,121, 28354–28363. [
[62] San, S.; Li, N.; Tao, Y.; Zhang, W.; Ching, W.Y. 2018. Understanding the atomic and electronic origin of mechanical property in thaumasite and ettringite mineral crystals. J. Am. Ceram. Soc, 101, 5177–5187.
[63] Hunca, B.; Dharmawardhana, C.; Sakidja, R.; Ching, W.-Y. Ab initio calculations of thermomechanical properties and electronic structure of vitreloy Zr41.2Ti13.8Cu12.5Ni10Be22.5. Phys. Rev. B 2016, 94, 144207.
[64] Ching, W.Y.; Yoshiya, M.; Adhikari, P.; Rulis, P.; Ikuhara, Y.; Tanaka, I. First-principles study in an inter-granular glassy film model of silicon nitride. J. Am. Ceram. Soc. 2018, 101, 2673–2688.
[65] Balogun, Rilwan Oluwanishola., Olopade, Muteeu O, Oyebola, Olusola O and Adewoyin, Adeyinka D., 2024. In-silico investigation of photovoltaic performance of MgXS3 (X= Ti and Zr) chalcogenide perovskites compounds. Archives of Metallurgy and Materials. Arch. Metall. Mater. 69, 3, 943-954
[66] Ching, W.-Y.; Poudel, L.; San, S.; Baral, K. 2019.Interfacial interaction between suolunite crystal and silica binding peptide for novel bioinspired cement. ACS Comb. Sci. 21, 794– 804.
[67] Poudel, L.; Twarock, R.; Steinmetz, N.F.; Podgornik, R.; Ching, W.-Y. 2017. Impact of Hydrogen Bonding in the Binding Site between Capsid Protein and MS2 Bacteriophage ssRNA. J. Phys. Chem. B, 121, 6321–6330.
[68] Adhikari, P.; Li, N.; Shin, M.; Steinmetz, N.F.; Twarock, R.; Podgornik, R.; Ching, W.- Y. 2020. Intra-and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: Implication for ACE2 receptor binding. Phys. Chem. Chem. Phys. 22, 18272–18283.
[69] Mulliken, R.S. 1955. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys., 23, 1833–1840.
[70] Dharmawardhana, C.; Misra, A.; Ching, W.-Y. Quantum mechanical metric for internal cohesion in cement crystals. Sci. Rep. 2014, 4, 7332.