[1] Rahman, M.H., Chowdhury, E.H., Redwan, D.A. and Hong, S., 2021. Computational characterization of thermal and mechanical properties of single and bilayer germanene nanoribbon. Computational Materials Science, 190, p.110272.
[2] Kalami, R. and Ketabi, S.A., 2023. Role of Linear Defects on the Electronic, Transport, and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons. Journal of Electronic Materials, pp.1-11.
[3] Kalami, R. and Ketabi, S.A., 2023. Electronic and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays. Journal of Electronic Materials, 52(10), pp.6566-6577.
[4] Tsukagoshi, K., Alphenaar, B.W, Ago, H.,1999. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature 401, 572.
[5] Xiong, Z.H., Wu, D., Vardeny, Z.V., Shi, J., 2004. Giant magnetoresistance in organic spin-valves, Nature 427 821.
[6] Dediu, V., Murgia, M., Matacotta, F. C., Taliani, C., Barbanera, S., 2002. Room temperature spin polarized injection in organic semiconductor, Solid State Commun. 122 181.
[7] Shim, J.H., Raman, K.V., Park, Y.J., Santos, T.S., Miao, G.X., Satpati, B., Moodera, J.S., 2008. Large spin diffusion length in an amorphous organic semiconductor, Phys. Rev. Lett. 100, 226603.
[8] Santos, T.S., Lee, J.S., Migdal, P., Lekshmi, I.C., Satpati, B., Moodera, J.S., 2007. Room temperature tunnel magnetoresistance and spin-polarized tunnelling through an organic semiconductor barrier, Phys. Rev. Lett. 98, 016601.
[9] Ouyang, M., Awschalom, D.D., 2003. Coherent spin transfer between molecularly bridged quantum dots, Science ,301, 1074.
[10] Petta, J.R., Slater, S.K., Ralph, D.C., 2004. Spin-dependent transport in molecular tunnel junctions, Phys. Rev. Lett. 93, 136601.
[11] Sanvito, S., 2007. Memoirs of a spin, Nature Nanotechnology, 2, 204.
[12] Ning, Z., Zhu, Y., Wang, J., Guo, H., 2008. Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions, Phys. Rev. Lett.100, 056803.
[13] Bentien, A., Christensen, M., Bryan, J., Sanchez, A., Paschen, S., Steglich, F., Stucky, G.D., and Iversen, B.B. 2004., Phys. B, 69, 045107 (2004).
[14] Shokri, A. and Salami, N., 2019. Thermoelectric properties in monolayer MoS2 nanoribbons with Rashba spin–orbit interaction. Journal of Materials Science, 54(1), pp.467-482.
[15] Checkelsky, J.G. and Ong, N.P., 2009. Thermopower and Nernst effect in graphene in a magnetic field. Physical Review B, 80(8), p.081413.
[16] Yan, Y., Liang, Q.F., Zhao, H., Wu, C.Q. and Li, B., 2012. Thermoelectric properties of one-dimensional graphene antidot arrays. Physics Letters A, 376(35), pp.2425-2429.
[17] Domínguez-Adame, F., Martín-González, M., Sánchez, D. and Cantarero, A., 2019. Nanowires: A route to efficient thermoelectric devices. Physica E: Low-dimensional Systems and Nanostructures, 113, pp.213-225.
[18] Kalami, R., & Ketabi, S. A. 2021. Spin-dependent thermoelectric properties of a magnetized zigzag graphene nanoribbon. Progress in Physics of Applied Materials, 1(1), 1-6.
[19] Kalami, R., & Ketabi, S. A. 2023. Comparison of thermoelectric properties of armchair germanene nanoribbon and armchair germanene nanomesh. Progress in Physics of Applied Materials,3(2),169-176.
[20] Zhang, K. B., Tan, S. H., Peng, X. F., & Long, M. Q. 2024. Electronic and thermoelectric properties in SnS-nanoribbon-based heterojunctions. Chinese Physics Letters, 41(9), 097301.
[21] Song, T. T., Yang, N. X., Wang, R., Liao, H., Song, C. Y., & Cheng, X. Y. 2024. Enhanced thermoelectric performance of graphene p−n junction nanoribbon. Physica E: Low-dimensional Systems and Nanostructures, 164, 116057.
[22] Nolas, G.S., Cohn, J.L., Slack, G.A., and Schujman, S.B., 1998. Appl. Phys. Lett. 73, 178.
[23] May, A.F., Toberer, E.S., Saramat, A and Snyder, G.J., 2009. Phys. Rev. B, 80, 125205.
[24] Christensen, M., Lock, N., Overgaard, J., and Iversen, B.B., 2006. J. Am. Chem. Soc. 128, 15657.
[25] Sales, B.C., Mandrus, D., and Williams, R.K., 1996. Science, 272, 1325.
[26] Rull-Bravo, M.; Moure, A.; Fernández, J.; Martín-González, M. Skutterudites as thermoelectric materials: 2015. Revisited. RSC Adv. 5, 41653–41667.
[27] Tan, G.; Zhao, L.-D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149.
[28] Pichanusakorn, P.; Kuang, Y.; Patel, C.; Tu, C.; Bandaru, P. 2012. Feasibility of enhancing the thermoelectric power factor in GaNx As1−x. Phys. Rev. B, 86, 085314.
[29] Ouardi, S.; Fecher, G.H.; Felser, C.; Schwall, M.; Naghavi, S.S.; Gloskovskii, A.; Balke, B.; Hamrle, J.; Postava, K.; Pištora, J. 2012. Electronic structure and optical, mechanical, and transport properties of the pure, electron-doped, and hole-doped Heusler compound CoTiSb. Phys. Rev. B, 86, 045116.
[30] Kim, H.; Kaviany, M. 2012. Effect of thermal disorder on high figure of merit in PbTe. Phys. Rev. B, 86, 045213.
[31] Kerdsongpanya, S.; Alling, B.; Eklund, P. 2012. Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties. Phys. Rev. B, 86, 195140.
[32] Hoat, D. 2022. Comparative study of structural, electronic, optical and thermoelectric properties of GaS bulk and monolayer. Philos. Mag. 99, 736–751.
[33] Hoat, D.; Naseri, M.; Ponce-Perez, R.; Hieu, N.N.; Vu, T.V.; Rivas-Silva, J.; Cocoletzi, G.H. 2020. Reducing the electronic band gap of BN monolayer by coexistence of P (As)-doping and external electric field. Superlattices Microstruct. 137, 106357.
[34] Naseri, M.; Hoat, D.2019. Prediction of 2D Li2X (X = Se, Te) monolayer semiconductors by first principles calculations. Phys. Lett. A, 383, 125992.
[35] Hong, M.; Wang, Y.; Liu, W.; Matsumura, S.; Wang, H.; Zou, J.; Chen, Z.G. Arrays of planar vacancies in superior thermoelectric Ge1−x−yCdxBiyTe with band convergence. Adv. Energy Mater. 2018, 8, 1801837.
[36] Tang, G.; Liu, J.; Zhang, J.; Li, D.; Rara, K.H.; Xu, R.; Lu, W.; Liu, J.; Zhang, Y.; Feng, Z. 2018. Realizing high thermoelectric performance below phase transition temperature in polycrystalline snse via lattice anharmonicity strengthening and strain engineering. ACS Appl. Mater. Interfaces, 10, 30558–30565.
[37] Gayner, C.; Kar, K.K. 2016. Recent advances in thermoelectric materials. Prog. Mater. Sci. 83, 330–382.
[38] Ju, H.; Kim, M.; Kim, J. 2015. A facile fabrication of n-type Bi2Te3 nanowire/graphene layer by-layer hybrid structure and their improved thermoelectric performance. Chem. Eng. J., 102–112.
[39] Han, C.; Sun, Q.; Li, Z.; Dou, S.X. 2016. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater. 6, 1600498.
[40] Jeffery L. Gray, 2011. The physics of the solar cell, Handbook of photovoltaic science and engineering 2, 82–128.
[41] Mukesh Jain, edition, II-VI Semiconductor Compounds, World scientific, 1993.
[42] Liu, M.L.; Chen, I.W.; Huang, F.Q.; Chen, L.D. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv. Mater. 2009, 21, 3808–3812.
[43] Sevik, C.; Çagın, T. 2010. Abinitio study of thermoelectric transport properties of pure and doped quaternary compounds. Phys. Rev. B, 82, 045202.
[44] Ibáñez, M.; Zamani, R.; LaLonde, A.; Cadavid, D.; Li, W.; Shavel, A.; Arbiol, J.; Morante, J.R.; Gorsse, S.; Snyder, G.J. 2012. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J. Am. Chem. Soc, 134, 4060–4063.
[45] Zeier, W.G.; Heinrich, C.P.; Day, T.; Panithipongwut, C.; Kieslich, G.; Brunklaus, G.; Snyder, G.J.; Tremel, W. 2014. Bond strength dependent superionic phase transformation in the solid solution series Cu2ZnGeSe4−xSx. J. Mater. Chem. A, 2, 1790–1794.
[46] Navrátil, J.; Kucek, V.; Plecháˇcek, T.; Cernošková, E.; Laufek, F.; Drašar, C.; Knotek, P. 2014. Thermoelectric Properties of Cu2HgSnSe4 -Cu2HgSnTe4 Solid Solution. J. Electron. Mater.43, 3719–3725.
[47] Bekki, B.; Amara, K.; Marbouh, N.; Khelfaoui, F.; Benallou, Y.; Elkeurti, M.; Bentayeb, A. Theoretical study of structural, elastic and thermodynamic properties of Cu2MgSnX4 (X = S, Se and Te) quaternary compounds. Comput. Condens. Matter 2019, 18, e00339.
[48] Guin, S.N.; Chatterjee, A.; Biswas, K. Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping. RSC Adv. 2014, 4, 11811–11815.
[49] Li, D.; Qin, X.; Zou, T.; Zhang, J.; Ren, B.; Song, C.; Liu, Y.; Wang, L.; Xin, H.; Li, J. 2015. High thermoelectric properties for Sn-doped AgSbSe2. J. Alloys Compd. 635, 87–91.
[50] Balogun, R.O., Olopade, M.A., Oyebola, O.O., Adewoyin, A.D., 2021. First-principle calculations to investigate structural, electronic and optical properties of MgHfS3,Materials Science and Engineering: B, Volume 273,115405, ISSN 0921-5107,
[51] Oyebola Olusola Olurotimi, Belewu Fatai Damilola, Balogun Rilwan Oluwanishola, Adegboyega Anthony Babajide and Oyebode Daniel Oluwatimilehin, 2024. Exploring the Thermoelectric Potential of Trigonal MgS2: A Computational Investigation Using DFT and Boltzmann Transport Theory. Communication in Physical Sciences,11(2): 288-298
[52] Adegboyega, A.B, Olopade, M.A., Ogungbemi, K.I., Balogun, R.O., 2024. Electro-optical and thermoelectric properties of perovskite CsKAgBiX6(X=Cl,Br,I): A DFT study, Computational Condensed Matter,Volume 38,e00878,ISSN 2352-2143, https://doi.org/10.1016/j.cocom.2023.e00878.
[53] Lee, J.K.; Oh, M.-W.; Ryu, B.; Lee, J.E.; Kim, B.-S.; Min, B.-K.; Joo, S.-J.; Lee, H.-W.; Park, S.-D. 2017. Enhanced thermoelectric properties of AgSbTe2 obtained by controlling heterophases with Ce doping. Sci. Rep.7, 4496.
[54] Ching, W.-Y.; Rulis, P. Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals; Oxford University Press: Oxford, UK, 2012.
[55] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I. 2009. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 21, 395502.
[56] Hasan, S.; Adhikari, P.; Baral, K.; Ching, W.-Y. 2020. Conspicuous interatomic bonding in chalcogenide crystals and implications on electronic, optical, and elastic properties. AIP Adv,10, 075216.
[57] Hasan, S.; Baral, K.; Li, N.; Ching, W.-Y. 2021. Structural and physical properties of 99 complex bulk chalcogenides crystals using first-principles calculations. Sci. Rep, 11, 9921.
[58] Kresse, G.; Furthmüller, J. 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169.
[59] Dharmawardhana, C.; Bakare, M.; Misra, A.; Ching, W.Y. 2016. Nature of interatomic bonding in controlling the mechanical properties of calcium silicate hydrates. J. Am. Ceram. Soc. 99, 2120–2130.
[60] Adhikari, P.; Khaoulaf, R.; Ez-Zahraouy, H.; Ching, W.-Y. 2017. Complex interplay of interatomic bonding in a multi-component pyrophosphate crystal: K2Mg (H2P2O7 )2 H2O. R. Soc. Open Sci. 4, 170982.
[61] Poudel, L.; Tamerler, C.; Misra, A.; Ching, W.-Y. 2017. Atomic-Scale Quantification of Interfacial Binding between Peptides and Inorganic Crystals: The Case of Calcium Carbonate Binding Peptide on Aragonite. J. Phys. Chem. C,121, 28354–28363. [
[62] San, S.; Li, N.; Tao, Y.; Zhang, W.; Ching, W.Y. 2018. Understanding the atomic and electronic origin of mechanical property in thaumasite and ettringite mineral crystals. J. Am. Ceram. Soc, 101, 5177–5187.
[63] Hunca, B.; Dharmawardhana, C.; Sakidja, R.; Ching, W.-Y. Ab initio calculations of thermomechanical properties and electronic structure of vitreloy Zr41.2Ti13.8Cu12.5Ni10Be22.5. Phys. Rev. B 2016, 94, 144207.
[64] Ching, W.Y.; Yoshiya, M.; Adhikari, P.; Rulis, P.; Ikuhara, Y.; Tanaka, I. First-principles study in an inter-granular glassy film model of silicon nitride. J. Am. Ceram. Soc. 2018, 101, 2673–2688.
[65] Balogun, Rilwan Oluwanishola., Olopade, Muteeu O, Oyebola, Olusola O and Adewoyin, Adeyinka D., 2024. In-silico investigation of photovoltaic performance of MgXS3 (X= Ti and Zr) chalcogenide perovskites compounds. Archives of Metallurgy and Materials. Arch. Metall. Mater. 69, 3, 943-954
[66] Ching, W.-Y.; Poudel, L.; San, S.; Baral, K. 2019.Interfacial interaction between suolunite crystal and silica binding peptide for novel bioinspired cement. ACS Comb. Sci. 21, 794– 804.
[67] Poudel, L.; Twarock, R.; Steinmetz, N.F.; Podgornik, R.; Ching, W.-Y. 2017. Impact of Hydrogen Bonding in the Binding Site between Capsid Protein and MS2 Bacteriophage ssRNA. J. Phys. Chem. B, 121, 6321–6330.
[68] Adhikari, P.; Li, N.; Shin, M.; Steinmetz, N.F.; Twarock, R.; Podgornik, R.; Ching, W.- Y. 2020. Intra-and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: Implication for ACE2 receptor binding. Phys. Chem. Chem. Phys. 22, 18272–18283.
[69] Mulliken, R.S. 1955. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys., 23, 1833–1840.
[70] Dharmawardhana, C.; Misra, A.; Ching, W.-Y. Quantum mechanical metric for internal cohesion in cement crystals. Sci. Rep. 2014, 4, 7332.