[1] Hussain, A., Begum, A. and Rahman, A., 2013. Characterization of nanocrystalline lead sulphide thin films prepared by chemical bath deposition technique. Arabian Journal for Science and Engineering, 38, pp.169-174.
[2] Slonopas, A., Alijabbari, N., Saltonstall, C., Globus, T. and Norris, P., 2015. Chemically deposited nanocrystalline lead sulfide thin films with tunable properties for use in photovoltaics. Electrochimica Acta, 151, pp.140-149.
[3] Contreras-Rascón, J.I., Díaz-Reyes, J., Luna-Suárez, S., Carrillo-Torres, R.C. and Sánchez-Zeferino, R., 2019. Characterisation of chemical bath deposition PbS nanofilms using polyethyleneimine, triethanolamine and ammonium nitrate as complexing agents. Thin Solid Films, 692, p.137609.
[4] Hone, F.G. and Dejene, F.B., 2018. Synthesis and characterization of lead sulphide thin films from ethanolamine (ETA) complexing agent chemical bath. Materials Research Express, 5(2), p.026409.
[5] Yücel, Y. and Yücel, E., 2018. Synthesis and characterization of lead sulfide thin films by coumarin assisted CBD method. Optik, 164, pp.263-270.
[6] Thirumavalavan, S., Mani, K. and Suresh, S., 2015. Investigation on structural, optical, morphological and electrical properties of lead sulphide (PbS) thin films. Journal of Ovonic Research, 11(3), pp.123-130.
[7] Suresh, S. and Arunseshan, C., 2014. Dielectric properties of cadmium selenide (CdSe) nanoparticles synthesized by solvothermal method. Applied Nanoscience, 4, pp.179-184.
[8] da Silva Filho, J.M.C. and Marques, F.C., 2019. Structural and optical temperature-dependent properties of PbS thin films deposited by radio frequency sputtering. Materials Science in Semiconductor Processing, 91, pp.188-193.
[9] Preobrajenski, A.B. and Chassé, T., 1999. Epitaxial growth and interface structure of PbS on InP (110). Applied surface science, 142(1-4), pp.394-399.
[10] Motlagh, Z.A. and Araghi, M.E.A., 2015. Effect of annealing temperature on optical and electrical properties of lead sulfide thin films. Materials Science in Semiconductor Processing, 40, pp.701-707.
[11] Chaudhary, A., Klebanov, M. and Abdulhalim, I., 2015. PbS nanosculptured thin film for phase retarder, anti-reflective, excellent absorber, polarizer and sensor applications. Nanotechnology, 26(46), p.465703.
[12] Singh, B.P., Kumar, R., Kumar, A. and Tyagi, R.C., 2015. Vacuum deposition of stoichiometric crystalline PbS films: the effect of sulfurizing environment during deposition. Materials Research Express, 2(10), p.106401.
[13] Cheraghizade, M., Jamali-Sheini, F. and Yousefi, R., 2017. Optical, electrical, and photovoltaic properties of PbS thin films by anionic and cationic dopants. Applied Physics A, 123(6), p.390.
[14] Akhtar, J., Afzaal, M., Vincent, M.A., Burton, N.A., Hillier, I.H. and O'Brien, P., 2011. Low temperature CVD growth of PbS films on plastic substrates. Chemical Communications, 47(7), pp.1991-1993.
[15] Yang, Y.J., 2006. A novel electrochemical preparation of PbS nanoparticles. Materials Science and Engineering: B, 131(1-3), pp.200-202.
[16] Vankhade, D. and Chaudhuri, T.K., 2019. Effect of thickness on structural and optical properties of spin-coated nanocrystalline PbS thin films. Optical Materials, 98, p.109491.
[17] Sarica, E. and Bilgin, V., 2017. Effect of Pb: S molar ratio in precursor solution on the properties of lead sulphide thin films by ultrasonic spray pyrolysis. Materials Science in Semiconductor Processing, 71, pp.42-49.
[18] Veena, E., Bangera, K.V. and Shivakumar, G.K., 2016. Effect of substrate temperature on the structural and electrical properties of spray deposited lead sulfide thin films. Materials Today: Proceedings, 3(6), pp.2225-2231.
[19] RaviShankar, S., Balu, A.R., Anbarasi, M. and Nagarethinam, V.S., 2015. Influence of precursor molar concentration on the structural, morphological, optical and electrical properties of PbS thin films deposited by spray pyrolysis technique using perfume atomizer. Optik, 126(20), pp.2550-2555.
[20] Murza, V., Friedman, O., Vradman, L. and Golan, Y., 2018. Liquid flow deposition of PbS films on GaAs (100). CrystEngComm, 20(26), pp.3765-3771.
[21] Obaid, A.S., Mahdi, M.A., Yusof, Y., Bououdina, M. and Hassan, Z., 2013. Structural and optical properties of nanocrystalline lead sulfide thin films prepared by microwave-assisted chemical bath deposition. Materials science in semiconductor processing, 16(3), pp.971-979.
[22] Yücel, E., Yücel, Y. and Beleli, B., 2015. Process optimization of deposition conditions of PbS thin films grown by a successive ionic layer adsorption and reaction (SILAR) method using response surface methodology. Journal of Crystal Growth, 422, pp.1-7.
[23] Preetha, K.C., Murali, K.V., Ragina, A.J., Deepa, K., Dhanya, A.C. and Remadevi, T.L., 2013, May. The role of cationic precursors in structural, morphological and optical properties of PbS thin films. In IOP Conference Series: Materials Science and Engineering (Vol. 43, No. 1, p. 012009). IOP Publishing.
[24] Baruah, B.J. and Sarma, K.C., 2017. Remarkable change of structural, optical, photoluminescence and electrical properties of chemically prepared nanocrystalline films of PbS with concentration of triethanolamine (TEA). Journal of Materials Science: Materials in Electronics, 28, pp.5913-5924.
[25] Choudhury, N., 2016. Chemically deposited nanocrystalline PbS: effect of substrates. Indian Journal of Physics, 90(3), pp.283-287.
[26] Choudhury, N. and Sarma, B.K., 2011. Structural analysis of chemically deposited nanocrystalline PbS films. Thin Solid Films, 519(7), pp.2132-2134.
[27] Choi, C.H., Paul, B.K. and Chang, C.H., 2014. Microreactor-assisted solution deposition for compound semiconductor thin films. Processes, 2(2), pp.441-465.
[28] Gosavi, S.R., Nikam, C.P., Shelke, A.R., Patil, A.M., Ryu, S.W., Bhat, J.S. and Deshpande, N.G., 2015. Chemical synthesis of porous web-structured CdS thin films for photosensor applications. Materials Chemistry and Physics, 160, pp.244-250.
[29] Seghaier, S., Kamoun, N., Brini, R. and Amara, A.B., 2006. Structural and optical properties of PbS thin films deposited by chemical bath deposition. Materials Chemistry and Physics, 97(1), pp.71-80.
[30] Chattarki, A.N., Kamble, S.S. and Deshmukh, L.P., 2012. Role of pH in aqueous alkaline chemical bath deposition of lead sulfide thin films. Materials Letters, 67(1), pp.39-41.
[31] Sonavane, D.K., Jare, S.K., Kathare, R.V., Bulakhe, R.N. and Shim, J.J., 2018. Chemical synthesis of PbS thin films and its physicochemical properties. Materials Today: Proceedings, 5(2), pp.7743-7747.
[32] Puspitasari, I., Gujar, T.P., Jung, K.D. and Joo, O.S., 2007. Simple chemical preparation of CuS nanowhiskers. Materials Science and Engineering: B, 140(3), pp.199-202.
[33] Hone, F.G. and Dejene, F.B., 2017. Tuning the optical band gap and stoichiometric ratio of chemically synthesized lead selenide thin films by controlling film thickness. Journal of Materials Science: Materials in Electronics, 28, pp.5979-5989.
[34] Ovsyannikov, S.V., Shchennikov, V.V., Cantarero, A., Cros, A. and Titov, A.N., 2007. Raman spectra of (PbS) 1.18 (TiS2) 2 misfit compound. Materials Science and Engineering: A, 462(1-2), pp.422-426.
[35] Horcas, I., Fernández, R., Gomez-Rodriguez, J.M., Colchero, J.W.S.X., Gómez-Herrero, J.W.S.X.M. and Baro, A.M., 2007. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of scientific instruments, 78(1).
[36] Koaib, J., Bouguila, N., Abassi, H., Moutia, N., Kraini, M., Timoumi, A., Vázquez-Vázquez, C., Khirouni, K. and Alaya, S., 2020. Dielectric and electrical properties of annealed ZnS thin films. The appearance of the OLPT conduction mechanism in chalcogenides. RSC advances, 10(16), pp.9549-9562.
[37] Baruah, B.J., Bora, M.N., Saikia, L., Saikia, D., Phukan, P. and Sarma, K.C., 2016. Effects of deposition temperature on structural, optical and electrical properties of TEA complexed nanocrystalline films of PbS prepared from lead acetate with reduced concentration. Journal of Materials Science: Materials in Electronics, 27, pp.3911-3917.