[1] Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H., 2003. One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, 15(5), pp.353-389.
[2] Son, Y.W., Cohen, M.L. and Louie, S.G., 2006. Half-metallic graphene nanoribbons. nature, 444(7117), pp.347-349.
[3] Song, Y.-L., Zhang, Y., Zhang, J.-M. and Lu, D.-B. J. a. S. S. 2010. Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. 256, 6313-6317.
[4] Lopez-Bezanilla, A., Huang, J., Terrones, H. and Sumpter, B.G., 2011. Boron nitride nanoribbons become metallic. Nano letters, 11(8), pp.3267-3273.
[5] Kou, L., Tang, C., Zhang, Y., Heine, T., Chen, C. and Frauenheim, T., 2012. Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons. The journal of physical chemistry letters, 3(20), pp.2934-2941.
[6] Jiao, L., Zhang, L., Wang, X., Diankov, G. and Dai, H., 2009. Narrow graphene nanoribbons from carbon nanotubes. Nature, 458(7240), pp.877-880.
[7] Tapasztó, L., Dobrik, G., Lambin, P. and Biro, L.P., 2008. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature nanotechnology, 3(7), pp.397-401.
[8] Wang, X.H. and Zhou, Y.C., 2010. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. Journal of Materials Science & Technology, 26(5), pp.385-416.
[9] Eklund, P., Beckers, M., Jansson, U., Högberg, H. and Hultman, L., 2010. The Mn+ 1AXn phases: Materials science and thin-film processing. Thin Solid Films, 518(8), pp.1851-1878.
[10] Khazaei, M., Arai, M., Sasaki, T., Chung, C.Y., Venkataramanan, N.S., Estili, M., Sakka, Y. and Kawazoe, Y., 2013. Novel electronic and magnetic properties of two‐dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23(17), pp.2185-2192.
[11] Zhao, S., Kang, W. and Xue, J., 2015. MXene nanoribbons. Journal of Materials Chemistry C, 3(4), pp.879-888.
[12] Zhang, X., Zhao, X., Wu, D., Jing, Y. and Zhou, Z., 2015. High and anisotropic carrier mobility in experimentally possible Ti 2 CO 2 (MXene) monolayers and nanoribbons. Nanoscale, 7(38), pp.16020-16025.
[13] Hong, L., Klie, R.F. and Öğüt, S., 2016. First-principles study of size-and edge-dependent properties of MXene nanoribbons. Physical Review B, 93(11), p.115412.
[14] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I. and Dal Corso, A., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantumsimulations of materials. Journal of physics: Condensed matter, 21(39), p.395502.
[15] Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M. and Colonna, N., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of physics: Condensed matter, 29(46), p.465901.
[16] Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., De Gironcoli, S., Delugas, P., Ferrari Ruffino, F. and Ferretti, A., 2020. Quantum ESPRESSO toward the exascale. The Journal of chemical physics, 152(15).
[17] Kokalj, A., 2003. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science, 28(2), pp.155-168.
[18] Prandini, G., Marrazzo, A., Castelli, I.E., Mounet, N. and Marzari, N., 2018. Precision and efficiency in solid-state pseudopotential calculations. npj Computational Materials, 4(1), p.72.
[19] Zhou, Y., Luo, K., Zha, X., Liu, Z., Bai, X., Huang, Q., Guo, Z., Lin, C.T. and Du, S., 2016. Electronic and transport properties of Ti2CO2 MXene nanoribbons. The Journal of Physical Chemistry C, 120(30), pp.17143-17152.
[20] Yao, W., Yang, S.A. and Niu, Q., 2009. Edge states in graphene: From gapped flat-band to gapless chiral modes. Physical review letters, 102(9), p.096801.
[21] Plotnik, Y., Rechtsman, M.C., Song, D., Heinrich, M., Zeuner, J.M., Nolte, S., Lumer, Y., Malkova, N., Xu, J., Szameit, A. and Chen, Z., 2014. Observation of unconventional edge states in ‘photonic graphene’. Nature materials, 13(1), pp.57-62.