Investigation on the Electronic Properties of Functionalized MXene Nanoribbons M2XT2 (M=Ti, Zr, Sc & X=C & T=O, F) with Zigzag Edges

Document Type : Original Article

Authors

1 School of Physics, Iran University of Science and Technology, Tehran, Iran

2 Iran University of Science & Technology

Abstract

Nanoribbons, due to their unique quantum confinement effects and surface effects, have high potential for applications in nanoelectronics and spintronics. This study investigates the electronic properties of zigzag-edged MXene nanoribbons, focusing on functionalized MXenes of the form M2XT2, where M = Ti, Zr, Sc, X = C, and T = O, F. Using density functional theory (DFT), we analyze nanoribbons with varying sizes (n = 9 to 15) and edge configurations. Our results reveal that except for 9-ZNR, 12-ZNR, and 15-ZNR, all other zigzag-edged MXene nanoribbons exhibit metallic properties, with the presence of X = C in the edge configurations being a distinguishing factor. For the semiconducting nanoribbons, the band gaps decrease uniformly with increasing width, which aligns with quantum confinement effects. We also observe that the conduction and valence bands are primarily influenced by the d-orbitals of the transition metals (Ti, Zr, Sc) and the p-orbitals of the functional groups (C, O, F), with specific band structures indicating indirect band gaps for semiconductor behavior. Our findings suggest that the electronic properties of these nanoribbons are significantly affected by their size, edge configuration, and functionalization, providing valuable insights for potential applications in electronic and optoelectronic devices. 

Keywords

Main Subjects


[1]    Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H., 2003. One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials15(5), pp.353-389.
[2]    Son, Y.W., Cohen, M.L. and Louie, S.G., 2006. Half-metallic graphene nanoribbons. nature444(7117), pp.347-349.
[3]    Song, Y.-L., Zhang, Y., Zhang, J.-M. and Lu, D.-B. J. a. S. S. 2010. Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. 256, 6313-6317.
[4]    Lopez-Bezanilla, A., Huang, J., Terrones, H. and Sumpter, B.G., 2011. Boron nitride nanoribbons become metallic. Nano letters11(8), pp.3267-3273.
[5]    Kou, L., Tang, C., Zhang, Y., Heine, T., Chen, C. and Frauenheim, T., 2012. Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons. The journal of physical chemistry letters3(20), pp.2934-2941.
[6]    Jiao, L., Zhang, L., Wang, X., Diankov, G. and Dai, H., 2009. Narrow graphene nanoribbons from carbon nanotubes. Nature458(7240), pp.877-880.
[7]    Tapasztó, L., Dobrik, G., Lambin, P. and Biro, L.P., 2008. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature nanotechnology3(7), pp.397-401.
[8]    Wang, X.H. and Zhou, Y.C., 2010. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. Journal of Materials Science & Technology26(5), pp.385-416.
[9]    Eklund, P., Beckers, M., Jansson, U., Högberg, H. and Hultman, L., 2010. The Mn+ 1AXn phases: Materials science and thin-film processing. Thin Solid Films518(8), pp.1851-1878.
[10]  Khazaei, M., Arai, M., Sasaki, T., Chung, C.Y., Venkataramanan, N.S., Estili, M., Sakka, Y. and Kawazoe, Y., 2013. Novel electronic and magnetic properties of two‐dimensional transition metal carbides and nitrides. Advanced Functional Materials23(17), pp.2185-2192.
[11]  Zhao, S., Kang, W. and Xue, J., 2015. MXene nanoribbons. Journal of Materials Chemistry C3(4), pp.879-888.
[12]  Zhang, X., Zhao, X., Wu, D., Jing, Y. and Zhou, Z., 2015. High and anisotropic carrier mobility in experimentally possible Ti 2 CO 2 (MXene) monolayers and nanoribbons. Nanoscale7(38), pp.16020-16025.
[13]  Hong, L., Klie, R.F. and Öğüt, S., 2016. First-principles study of size-and edge-dependent properties of MXene nanoribbons. Physical Review B93(11), p.115412.
[14]  Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I. and Dal Corso, A., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantumsimulations of materials. Journal of physics: Condensed matter21(39), p.395502.
[15]  Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M. and Colonna, N., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of physics: Condensed matter29(46), p.465901.
[16]  Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., De Gironcoli, S., Delugas, P., Ferrari Ruffino, F. and Ferretti, A., 2020. Quantum ESPRESSO toward the exascale. The Journal of chemical physics152(15).
[17]  Kokalj, A., 2003. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science28(2), pp.155-168.
[18]  Prandini, G., Marrazzo, A., Castelli, I.E., Mounet, N. and Marzari, N., 2018. Precision and efficiency in solid-state pseudopotential calculations. npj Computational Materials4(1), p.72.
[19]  Zhou, Y., Luo, K., Zha, X., Liu, Z., Bai, X., Huang, Q., Guo, Z., Lin, C.T. and Du, S., 2016. Electronic and transport properties of Ti2CO2 MXene nanoribbons. The Journal of Physical Chemistry C120(30), pp.17143-17152.
[20]  Yao, W., Yang, S.A. and Niu, Q., 2009. Edge states in graphene: From gapped flat-band to gapless chiral modes. Physical review letters102(9), p.096801.
[21]  Plotnik, Y., Rechtsman, M.C., Song, D., Heinrich, M., Zeuner, J.M., Nolte, S., Lumer, Y., Malkova, N., Xu, J., Szameit, A. and Chen, Z., 2014. Observation of unconventional edge states in ‘photonic graphene’. Nature materials13(1), pp.57-62.