[1] Jang, E. and Jang, H., 2023. Quantum dot light-emitting diodes. Chemical Reviews, 123(8), pp.4663-4692.
[2] Montaño-Priede, J.L., Zapata-Herrera, M., Esteban, R., Zabala, N. and Aizpurua, J., 2024. An overview on plasmon-enhanced photoluminescence via metallic nanoantennas. Nanophotonics, 13(26), pp.4771-4794.
[3] Della Sala, F., Pachter, R. and Sukharev, M., 2022. Advances in modeling plasmonic systems. The Journal of Chemical Physics, 157(19).
[4] Yuan, Q., Wang, T., Yu, P., Zhang, H., Zhang, H. and Ji, W., 2021. A review on the electroluminescence properties of quantum-dot light-emitting diodes. Organic Electronics, 90, p.106086.
[5] Siripurapu, M., Meinardi, F., Brovelli, S. and Carulli, F., 2023. Environmental effects on the performance of quantum dot luminescent solar concentrators. ACS photonics, 10(8), pp.2987-2993.
[6] Miao, W.C., Hsiao, F.H., Sheng, Y., Lee, T.Y., Hong, Y.H., Tsai, C.W., Chen, H.L., Liu, Z., Lin, C.L., Chung, R.J. and Ye, Z.T., 2024. Microdisplays: mini‐LED, micro‐OLED, and micro‐LED. Advanced Optical Materials, 12(7), p.2300112.
[7] Corcione, E., Jakob, F., Wagner, L., Joos, R., Bisquerra, A., Schmidt, M., Wieck, A.D., Ludwig, A., Jetter, M., Portalupi, S.L. and Michler, P., 2024. Machine learning enhanced evaluation of semiconductor quantum dots. Scientific Reports, 14(1), p.4154.
[8] Xu, C., Chen, M., Xu, S. and Geng, C., 2024. Study of hybrid nanoscatterer for enhancing light efficiency of quantum dot-converted light-emitting diodes. Journal of Luminescence, 276, p.120869.
[9] Meng, T., Zheng, Y., Zhao, D., Hu, H., Zhu, Y., Xu, Z., Ju, S., Jing, J., Chen, X., Gao, H. and Yang, K., 2022. Ultrahigh-resolution quantum-dot light-emitting diodes. Nature Photonics, 16(4), pp.297-303.
[10] Zhang, X., Hu, H., Qie, Y., Lin, L., Guo, T. and Li, F., 2024. Boosting the efficiency of high-resolution quantum dot light-emitting devices based on localized surface plasmon resonance. ACS Applied Materials & Interfaces, 16(10), pp.13219-13224.
[11] Deng, C.H., Chen, Z.Z., Chen, Y.F., Sun, Q., Nie, J.X., Pan, Z.J., Zhang, H.D., Dong, B.Y., Chen, Y.A., Wang, D.Q. and Li, Y.C., 2024. Simultaneous enhancements on emissions from quantum dot and quantum well by Ag nanoparticles for color conversion. Semiconductor Science and Technology, 39(4), p.045017.
[12] Perveen, A., Zhang, X., Tang, J.L., Han, D.B., Chang, S., Deng, L.G., Ji, W.Y. and Zhong, H.Z., 2018. Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes. Chinese Physics B, 27(8), p.086101.
[13] Chen, F., Lin, Q., Wang, H., Wang, L., Zhang, F., Du, Z., Shen, H., and Li, L. S. (2016). Enhanced performance of quantum dot-based light-emitting diodes with gold nanoparticle-doped hole injection layer. Nanoscale Research Letters, 11(1), 1-8.
[14] Kosger, A.C., Ghobadi, A., Omam, Z.R., Soydan, M.C., Ghobadi, T.G.U. and Ozbay, E., 2023. Disordered plasmonic nanocavity enhanced quantum dot emission. Journal of Physics D: Applied Physics, 56(47), p.475107.
[15] Bhave, G., Lee, Y., Chen, P. and Zhang, J.X., 2015. Plasmonic nanograting enhanced quantum dots excitation for cellular imaging on-chip. Nanotechnology, 26(36), p.365301.
[16] Bracher, G., Schraml, K., Blauth, M., Wierzbowski, J., Lopez, N.C., Bichler, M., Müller, K., Finley, J.J. and Kaniber, M., 2014. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots. Journal of Applied Physics, 116(3).
[17] Lin, C.H., Chiang, H.C., Wang, Y.T., Yao, Y.F., Chen, C.C., Tse, W.F., Wu, R.N., Chang, W.Y., Kuo, Y., Kiang, Y.W. and Yang, C.C., 2018. Efficiency enhancement of light color conversion through surface plasmon coupling. Optics Express, 26(18), pp.23629-23640.