Strategies to Boost the Performance of Eco-Friendly Light-Emitting Diodes, Quantum Dots Size versus Plasmonic Layer

Document Type : Original Article

Authors

Department of Intelligent Systems Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Iran

Abstract

This study explores the enhancement of light-emitting diode (LED) performance through the integration of quantum dots (QDs) and plasmonic layers. Simulations were conducted using Lumerical software to analyze the effects of QD size (2, 5, and 10 nm) and plasmonic layer thickness on emitted light intensity and wavelength variations. The results demonstrate that the plasmonic layer significantly enhances the electromagnetic field near the QDs, leading to increased emission light intensity. Changing the QD size influences both the emission wavelength and intensity: smaller QDs shift the emission toward shorter wavelengths and exhibit higher intensity, while larger QDs shift it toward longer wavelengths with lower intensity. This combined approach offers an effective strategy for optimizing LED efficiency, enabling precise wavelength control and improved energy performance. The findings contribute to advancements in LED technology, high-quality displays, and energy-efficient nanoscale light sources, and also suggest promising directions for future research.

Keywords

Main Subjects


[1]    Jang, E. and Jang, H., 2023. Quantum dot light-emitting diodes. Chemical Reviews123(8), pp.4663-4692.
[2]    Montaño-Priede, J.L., Zapata-Herrera, M., Esteban, R., Zabala, N. and Aizpurua, J., 2024. An overview on plasmon-enhanced photoluminescence via metallic nanoantennas. Nanophotonics, 13(26), pp.4771-4794.
[3]    Della Sala, F., Pachter, R. and Sukharev, M., 2022. Advances in modeling plasmonic systems. The Journal of Chemical Physics, 157(19).
[4]    Yuan, Q., Wang, T., Yu, P., Zhang, H., Zhang, H. and Ji, W., 2021. A review on the electroluminescence properties of quantum-dot light-emitting diodes. Organic Electronics, 90, p.106086.
[5]    Siripurapu, M., Meinardi, F., Brovelli, S. and Carulli, F., 2023. Environmental effects on the performance of quantum dot luminescent solar concentrators. ACS photonics, 10(8), pp.2987-2993.
[6]    Miao, W.C., Hsiao, F.H., Sheng, Y., Lee, T.Y., Hong, Y.H., Tsai, C.W., Chen, H.L., Liu, Z., Lin, C.L., Chung, R.J. and Ye, Z.T., 2024. Microdisplays: mini‐LED, micro‐OLED, and micro‐LED. Advanced Optical Materials, 12(7), p.2300112.
[7]    Corcione, E., Jakob, F., Wagner, L., Joos, R., Bisquerra, A., Schmidt, M., Wieck, A.D., Ludwig, A., Jetter, M., Portalupi, S.L. and Michler, P., 2024. Machine learning enhanced evaluation of semiconductor quantum dots. Scientific Reports, 14(1), p.4154.
[8]    Xu, C., Chen, M., Xu, S. and Geng, C., 2024. Study of hybrid nanoscatterer for enhancing light efficiency of quantum dot-converted light-emitting diodes. Journal of Luminescence, 276, p.120869.
[9]    Meng, T., Zheng, Y., Zhao, D., Hu, H., Zhu, Y., Xu, Z., Ju, S., Jing, J., Chen, X., Gao, H. and Yang, K., 2022. Ultrahigh-resolution quantum-dot light-emitting diodes. Nature Photonics, 16(4), pp.297-303.
[10]  Zhang, X., Hu, H., Qie, Y., Lin, L., Guo, T. and Li, F., 2024. Boosting the efficiency of high-resolution quantum dot light-emitting devices based on localized surface plasmon resonance. ACS Applied Materials & Interfaces, 16(10), pp.13219-13224.
[11]  Deng, C.H., Chen, Z.Z., Chen, Y.F., Sun, Q., Nie, J.X., Pan, Z.J., Zhang, H.D., Dong, B.Y., Chen, Y.A., Wang, D.Q. and Li, Y.C., 2024. Simultaneous enhancements on emissions from quantum dot and quantum well by Ag nanoparticles for color conversion. Semiconductor Science and Technology, 39(4), p.045017.
[12]  Perveen, A., Zhang, X., Tang, J.L., Han, D.B., Chang, S., Deng, L.G., Ji, W.Y. and Zhong, H.Z., 2018. Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes. Chinese Physics B, 27(8), p.086101.
[13]  Chen, F., Lin, Q., Wang, H., Wang, L., Zhang, F., Du, Z., Shen, H., and Li, L. S. (2016). Enhanced performance of quantum dot-based light-emitting diodes with gold nanoparticle-doped hole injection layer. Nanoscale Research Letters, 11(1), 1-8.
[14]  Kosger, A.C., Ghobadi, A., Omam, Z.R., Soydan, M.C., Ghobadi, T.G.U. and Ozbay, E., 2023. Disordered plasmonic nanocavity enhanced quantum dot emission. Journal of Physics D: Applied Physics, 56(47), p.475107.
[15]  Bhave, G., Lee, Y., Chen, P. and Zhang, J.X., 2015. Plasmonic nanograting enhanced quantum dots excitation for cellular imaging on-chip. Nanotechnology, 26(36), p.365301.
[16]  Bracher, G., Schraml, K., Blauth, M., Wierzbowski, J., Lopez, N.C., Bichler, M., Müller, K., Finley, J.J. and Kaniber, M., 2014. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots. Journal of Applied Physics, 116(3).
[17]  Lin, C.H., Chiang, H.C., Wang, Y.T., Yao, Y.F., Chen, C.C., Tse, W.F., Wu, R.N., Chang, W.Y., Kuo, Y., Kiang, Y.W. and Yang, C.C., 2018. Efficiency enhancement of light color conversion through surface plasmon coupling. Optics Express, 26(18), pp.23629-23640.