Round-Shaped Micro Bio-Lasers Utilizing Rhodamine B as a Gain Medium

Document Type : Original Article

Authors

1 Physics department, Semnan university, Iran

2 Physics Department, Semnan University, Semnan, Iran

Abstract

Biolasers, new ones that utilize incorporated protein fluorophores within microscale optical cavities to produce coherent light, have a wide range of applications in medicine, including identification, diagnosing, and treating many diseases, skin repair, controlling chemical reactions, pattern generation, etc. Therefore, a new approach to form active microcavities for micro biolaser is proposed based on dye rhodamine B (RhB) and bovine serum albumin (BSA) in the paper. The results indicate the successful production of curved-shaped active cavities. The formed biocavities' average diameters and diameter dispersion are 35.221±0.674 μm and 1.9%, respectively. The output emissions of the device are studied under optical pumping by a Diode-Pumped Solid State (DPSS) laser with the Nd: YAG gain medium operated at 532 nm and an incidence angle of 45º. The output emissions are recorded at different angles, and the high output power is observed at an angle of 90° with the pump angle. Furthermore, the design device has different modes, and the lowest linewidth at half maximum (0.35 nm) and the highest quality factor (2313) are observed at an output wavelength of 809.6 nm. Therefore, the produced laser-activated microcavities can be exploited as suitable options in medical and non-medical optical applications.

Keywords

Main Subjects


[1]   Sun, Y. and Fan, X., 2012. Distinguishing DNA by analog‐to‐digital‐like conversion by using optofluidic lasers.
[2]   Fan, X. and Yun, S.H., 2014. The potential of optofluidic biolasers. Nature methods11(2), pp.141-147.
[3]   Wu, X., Chen, Q., Sun, Y. and Fan, X., 2013. Bio-inspired optofluidic lasers with luciferin. Applied Physics Letters102(20).
[4]   Van Nguyen, T., Mai, H.H., Van Nguyen, T., Duong, D.C. and Ta, V.D., 2020. Egg white based biological microlasers. Journal of Physics D: Applied Physics53(44), p.445104.
[5]   Mai, H.H., Nguyen, T.T., Giang, K.M., Do, X.T., Nguyen, T.T., Hoang, H.C. and Ta, V.D., 2020. Chicken albumen-based whispering gallery mode microlasers. Soft Matter16(39), pp.9069-9073.
[6]   Nguyen, V.T., Nguyen, X.T., Phan, N.N., Le, H.H. and Ta, V.D., 2023. STARCH BASED MICROSPHERE BIOLASERS. Journal of Science and Technique-Section on Physics and Chemical Engineering1(01).
[7]   Ma, R., Pan, H., Shen, T., Li, P., Chen, Y., Li, Z., Di, X. and Wang, S., 2017. Interaction of flavonoids from Woodwardia unigemmata with bovine serum albumin (BSA): Application of spectroscopic techniques and molecular modeling methods. Molecules22(8), p.1317.
[8]   Nguyen, T.T., Mai, H.H., Van Pham, T., Nguyen, T.X. and Ta, V.D., 2021. High quality factor, protein-based microlasers from self-assembled microcracks. Journal of Physics D: Applied Physics54(25), p.255108.
[9]   Van Nguyen, T., 2020. High-quality factor, biological microsphere and microhemisphere lasers fabricated by a single solution process. Optics Communications465, p.125647.
[10]  Nguyen, T.V., Nguyen, T.D., Pham, N.V., Nguyen, T.A. and Ta, D.V., 2021. Monodisperse and size-tunable high-quality factor microsphere biolasers. Optics Letters46(10), pp.2517-2520.
[11]  Wu, X., Chen, Q., Sun, Y. and Fan, X., 2013. Bio-inspired optofluidic lasers with luciferin. Applied Physics Letters102(20).
[12]  Aliannezhadi, M., Mozaffari, M.H. and Amirjan, F., 2023. Optofluidic R6G microbubble DBR laser: A miniaturized device for highly sensitive lab-on-a-chip biosensing. Photonics and Nanostructures-Fundamentals and Applications53, p.101108.
[13]  Liu, Y., Yang, X., Wang, Y. and Gong, Y., 2024. Fiber Optofluidic Microlasers Toward High‐performance Biochemical Sensing. Optical and Electronic Fibers: Emerging Applications and Technological Innovations, pp.95-117.
[14]  de Armas-Rillo, S., Abdul-Jalbar, B., Salas-Hernández, J., Raya-Sánchez, J.M., González-Hernández, T. and Lahoz, F., 2024. Analysis of Random Lasing in Human Blood. Biosensors14(9), p.441.
[15]  Prasetyanto, E.A., Wasisto, H.S. and Septiadi, D., 2022. Cellular lasers for cell imaging and biosensing. Acta Biomaterialia143, pp.39-51.
[16]  Gather, M.C. and Yun, S.H., 2011. Single-cell biological lasers. Nature Photonics5(7), pp.406-410.
[17]  Van Nguyen, T., Van Pham, N., Mai, H.H., Duong, D.C., Le, H.H., Sapienza, R. and Ta, V.D., 2019. Protein-based microsphere biolasers fabricated by dehydration. Soft Matter15(47), pp.9721-9726.
[18]  Cortes, F.R.U., Falomir, E., Lancis, J. and Mínguez-Vega, G., 2024. Pulsed laser fragmentation synthesis of carbon quantum dots (CQDs) as fluorescent probes in non-enzymatic glucose detection. Applied Surface Science665, p.160326.
[19]  Zhang, Y., Shi, B., Zhang, B., Lv, H., Zhang, S., Wang, M. and Wang, X., 2024. Coherent random laser in Enteromorpha prolifera. Journal of Luminescence275, p.120760.
[20]  Pan, T., Lu, D., Xin, H. and Li, B., 2021. Biophotonic probes for bio-detection and imaging. Light: Science & Applications10(1), p.124.
[21]  Li, J., Li, X., Zheng, T., Chu, J., Shen, C., Sang, Y., Hu, S. and Guo, J., 2021. Random lasing based on abalone shell. Optics Communications493, p.126979. [3]      Wu, X., Chen, Q., Sun, Y. and Fan, X., 2013. Bio-inspired optofluidic lasers with luciferin. Applied Physics Letters102(20).
[22]  Pham, N.V., Nguyen, Q.N., Nguyen, T.V., Nguyen, T.A. and Ta, V.D., 2024. High quality factor, monodisperse micron-sized random lasers based on porous PLGA spheres. Optics Letters49(21), pp.6165-6168.
[23]  Ta, V.D., Nguyen, T.V., Doan, T.A., Duong, D.C., Caixeiro, S., Saxena, D. and Sapienza, R., 2024. Random lasing in micron-sized individual supraparticles. Optics Letters49(14), pp.3886-3889.
[24]  Gholizadeh, Z., Aliannezhadi, M., Ghominejad, M. and Tehrani, F.S., 2024. Novel boehmite and η-alumina nanostructures synthesized using a green ultrasonic-assisted hydrothermal method by clove extract for water treatment. Journal of Water Process Engineering65, p.105786.
[25]  Al-Shemri, M.I., Aliannezhadi, M., Ghaleb, R.A. and Al-Awady, M.J., 2024. Au-H2Ti3O7 nanotubes for non-invasive anticancer treatment by simultaneous photothermal and photodynamic therapy. Scientific Reports14(1), p.25998.
[26]  Aliannezhadi, M., Doost Mohamadi, F., Jamali, M. and Shariatmadar Tehrani, F., 2025. Ultrasound-assisted green synthesized ZnO nanoparticles with different solution pH for water treatment. Scientific Reports15(1), p.7203.