[1] Sun, Y. and Fan, X., 2012. Distinguishing DNA by analog‐to‐digital‐like conversion by using optofluidic lasers.
[2] Fan, X. and Yun, S.H., 2014. The potential of optofluidic biolasers. Nature methods, 11(2), pp.141-147.
[3] Wu, X., Chen, Q., Sun, Y. and Fan, X., 2013. Bio-inspired optofluidic lasers with luciferin. Applied Physics Letters, 102(20).
[4] Van Nguyen, T., Mai, H.H., Van Nguyen, T., Duong, D.C. and Ta, V.D., 2020. Egg white based biological microlasers. Journal of Physics D: Applied Physics, 53(44), p.445104.
[5] Mai, H.H., Nguyen, T.T., Giang, K.M., Do, X.T., Nguyen, T.T., Hoang, H.C. and Ta, V.D., 2020. Chicken albumen-based whispering gallery mode microlasers. Soft Matter, 16(39), pp.9069-9073.
[6] Nguyen, V.T., Nguyen, X.T., Phan, N.N., Le, H.H. and Ta, V.D., 2023. STARCH BASED MICROSPHERE BIOLASERS. Journal of Science and Technique-Section on Physics and Chemical Engineering, 1(01).
[7] Ma, R., Pan, H., Shen, T., Li, P., Chen, Y., Li, Z., Di, X. and Wang, S., 2017. Interaction of flavonoids from Woodwardia unigemmata with bovine serum albumin (BSA): Application of spectroscopic techniques and molecular modeling methods. Molecules, 22(8), p.1317.
[8] Nguyen, T.T., Mai, H.H., Van Pham, T., Nguyen, T.X. and Ta, V.D., 2021. High quality factor, protein-based microlasers from self-assembled microcracks. Journal of Physics D: Applied Physics, 54(25), p.255108.
[9] Van Nguyen, T., 2020. High-quality factor, biological microsphere and microhemisphere lasers fabricated by a single solution process. Optics Communications, 465, p.125647.
[10] Nguyen, T.V., Nguyen, T.D., Pham, N.V., Nguyen, T.A. and Ta, D.V., 2021. Monodisperse and size-tunable high-quality factor microsphere biolasers. Optics Letters, 46(10), pp.2517-2520.
[11] Wu, X., Chen, Q., Sun, Y. and Fan, X., 2013. Bio-inspired optofluidic lasers with luciferin. Applied Physics Letters, 102(20).
[12] Aliannezhadi, M., Mozaffari, M.H. and Amirjan, F., 2023. Optofluidic R6G microbubble DBR laser: A miniaturized device for highly sensitive lab-on-a-chip biosensing. Photonics and Nanostructures-Fundamentals and Applications, 53, p.101108.
[13] Liu, Y., Yang, X., Wang, Y. and Gong, Y., 2024. Fiber Optofluidic Microlasers Toward High‐performance Biochemical Sensing. Optical and Electronic Fibers: Emerging Applications and Technological Innovations, pp.95-117.
[14] de Armas-Rillo, S., Abdul-Jalbar, B., Salas-Hernández, J., Raya-Sánchez, J.M., González-Hernández, T. and Lahoz, F., 2024. Analysis of Random Lasing in Human Blood. Biosensors, 14(9), p.441.
[15] Prasetyanto, E.A., Wasisto, H.S. and Septiadi, D., 2022. Cellular lasers for cell imaging and biosensing. Acta Biomaterialia, 143, pp.39-51.
[16] Gather, M.C. and Yun, S.H., 2011. Single-cell biological lasers. Nature Photonics, 5(7), pp.406-410.
[17] Van Nguyen, T., Van Pham, N., Mai, H.H., Duong, D.C., Le, H.H., Sapienza, R. and Ta, V.D., 2019. Protein-based microsphere biolasers fabricated by dehydration. Soft Matter, 15(47), pp.9721-9726.
[18] Cortes, F.R.U., Falomir, E., Lancis, J. and Mínguez-Vega, G., 2024. Pulsed laser fragmentation synthesis of carbon quantum dots (CQDs) as fluorescent probes in non-enzymatic glucose detection. Applied Surface Science, 665, p.160326.
[19] Zhang, Y., Shi, B., Zhang, B., Lv, H., Zhang, S., Wang, M. and Wang, X., 2024. Coherent random laser in Enteromorpha prolifera. Journal of Luminescence, 275, p.120760.
[20] Pan, T., Lu, D., Xin, H. and Li, B., 2021. Biophotonic probes for bio-detection and imaging. Light: Science & Applications, 10(1), p.124.
[21] Li, J., Li, X., Zheng, T., Chu, J., Shen, C., Sang, Y., Hu, S. and Guo, J., 2021. Random lasing based on abalone shell. Optics Communications, 493, p.126979. [3] Wu, X., Chen, Q., Sun, Y. and Fan, X., 2013. Bio-inspired optofluidic lasers with luciferin. Applied Physics Letters, 102(20).
[22] Pham, N.V., Nguyen, Q.N., Nguyen, T.V., Nguyen, T.A. and Ta, V.D., 2024. High quality factor, monodisperse micron-sized random lasers based on porous PLGA spheres. Optics Letters, 49(21), pp.6165-6168.
[23] Ta, V.D., Nguyen, T.V., Doan, T.A., Duong, D.C., Caixeiro, S., Saxena, D. and Sapienza, R., 2024. Random lasing in micron-sized individual supraparticles. Optics Letters, 49(14), pp.3886-3889.
[24] Gholizadeh, Z., Aliannezhadi, M., Ghominejad, M. and Tehrani, F.S., 2024. Novel boehmite and η-alumina nanostructures synthesized using a green ultrasonic-assisted hydrothermal method by clove extract for water treatment. Journal of Water Process Engineering, 65, p.105786.
[25] Al-Shemri, M.I., Aliannezhadi, M., Ghaleb, R.A. and Al-Awady, M.J., 2024. Au-H2Ti3O7 nanotubes for non-invasive anticancer treatment by simultaneous photothermal and photodynamic therapy. Scientific Reports, 14(1), p.25998.
[26] Aliannezhadi, M., Doost Mohamadi, F., Jamali, M. and Shariatmadar Tehrani, F., 2025. Ultrasound-assisted green synthesized ZnO nanoparticles with different solution pH for water treatment. Scientific Reports, 15(1), p.7203.