Exploring Bismuth-Induced Structural Modifications and Magnetic Phase Transitions in CuFe2O4 Ferrite

Document Type : Original Article

Authors

School of Physics, Damghan University, Damghan, Iran

Abstract

The effects of diamagnetic bismuth substitution on the microstructural and magnetic properties of sol-gel auto-combustion citrate nitrate synthesized CuFe2-xBixO4 (x=0.0, 0.4, 0.8, 1.2, 1.6 and 2.0) nano powders were investigated. The samples were characterized by techniques such as X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-Vis diffuse reflectance spectroscopy, and vibration sample magnetometer. The structural results showed a phase transition from a predominantly tetragonal structure with an I41/amd space group to a tetragonal structure with a P ncc space group. The magnetic properties of the samples revealed a transition from a ferrimagnetic to a diamagnetic phase due to the presence of the diamagnetic Bi3+. Although the coercive field exhibited a minimum value at a substitution level of x = 0.8, the saturation magnetization was found to decrease with increasing Bi substitution, ranging from 25.04 emu/g for x = 0.0 to -0.02 emu/g for x = 2.0.

Keywords

Main Subjects


[1]    Rahman, M.H., Chowdhury, E.H., Redwan, D.A. and Hong, S., 2021. Computational characterization of thermal and mechanical properties of single and bilayer germanene nanoribbon. Computational Materials Science, 190, p.110272.
[2]    Gholizadeh, A., 2017. A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods. Journal of the american ceramic society100(8), pp.3577-3588.
[3]    Wang, F., Yang, H. and Zhang, Y., 2018. Enhanced photocatalytic performance of CuBi2O4 particles decorated with Ag nanowires. Materials Science in Semiconductor Processing73, pp.58-66.
[4]    Khedri, H. and Gholizadeh, A., 2019. Experimental comparison of structural, magnetic and elastic properties of M0. 3Cu0. 2Zn0. 5Fe2O4 (M= Cu, Mn, Fe, Co, Ni, Mg) nanoparticles. Applied Physics A125(10), p.709.
[5]    Stojanovic, B. ed., 2018. Magnetic, ferroelectric, and multiferroic metal oxides. Elsevier.
[6]    Khodayari, K. and Gholizadeh, A., 2024. Exchange-spring behavior in Ni0. 3Cu0. 2Zn0. 5Fe2O4/PbFe12O19 nanocomposite. Physica Scripta99(3), p.035932.
[7]    Trompetter, B., Leveneur, J., Goddard-Winchester, M., Rumsey, B., Turner, J., Weir, G., Kennedy, J., Chong, S. and Long, N., 2023. Ferrite based soft magnetic composite development intended for inroad charging application. Journal of Magnetism and Magnetic Materials570, p.170530.
[8]    Sefatgol, R. and Gholizadeh, A., 2022. The effect of the annealing temperature on the microstructural, magnetic, and spin-dynamical properties of Mn–Mg–Cu–Zn ferrites. Physica B: Condensed Matter624, p.413442.
[9]    Huq, M.F., Saha, D.K., Ahmed, R. and Mahmood, Z.H., 2013. Ni-Cu-Zn ferrite research: a brief review. Journal of Scientific Research5(2), pp.215-234.
[10]  Beyranvand, M., Zahedi, A. and Gholizadeh, A., 2022. Cadmium substitution effect on microstructure and magnetic properties of Mg-Cu-Zn ferrites. Frontiers in Materials8, p.779837.
[11]  Liao, X., Liu, X., Wu, Y., Qian, L., Chen, Y., Wang, Y., Wu, Z., Huang, A., Liu, X. and Luo, J., 2025. Ni1-xZnxFe2O4 heterojunction composites derived from normal/inverse spinel structure for ppb-level acetone detection. Sensors and Actuators B: Chemical, p.137733.
[12]  Shamgani, N. and Gholizadeh, A., 2019. Structural, magnetic and elastic properties of Mn0. 3− xMgxCu0. 2Zn0. 5Fe3O4 nanoparticles. Ceramics International45(1), pp.239-246.
[13]  Zhang, R., Yuan, Q., Ma, R., Liu, X., Gao, C., Liu, M., Jia, C.L. and Wang, H., 2017. Tuning conductivity and magnetism of CuFe 2 O 4 via cation redistribution. RSC advances7(35), pp.21926-21932.
[14]  Gholizadeh, A., 2018. A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0. 5Zn0. 5Fe2O4 nanoparticles by a reducing atmosphere. Journal of Magnetism and Magnetic Materials452, pp.389-397.
[15]  Gholizadeh, A., 2018. A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0. 5Zn0. 5Fe2O4 nanoparticles by a reducing atmosphere. Journal of Magnetism and Magnetic Materials452, pp.389-397.
[16]  Eghdami, F. and Gholizadeh, A., 2023. A correlation between microstructural and impedance properties of MnFe2-xCoxO4 nanoparticles. Physica B: Condensed Matter, 650, p.414551.
[17]  Silva, M.D.P., Silva, F.C., Sinfrônio, F.S.M., Paschoal, A.R., Silva, E.N. and Paschoal, C.W.A., 2014. The effect of cobalt substitution in crystal structure and vibrational modes of CuFe2O4 powders obtained by polymeric precursor method. Journal of alloys and compounds584, pp.573-580.
[18]  Gholizadeh, A. and Beyranvand, M., 2020. Investigation on the structural, magnetic, dielectric and impedance analysis of Mg0. 3-xBaxCu0. 2Zn0. 5Fe2O4 nanoparticles. Physica B: Condensed Matter584, p.412079.
[19]  Yadav, R.S., Kuřitka, I., Vilcakova, J., Havlica, J., Masilko, J., Kalina, L., Tkacz, J., Hajdúchová, M. and Enev, V., 2017. Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. Journal of Materials Science: Materials in Electronics28, pp.6245-6261.
[20]  Beyranvand, M. and Gholizadeh, A., 2020. Structural, magnetic, elastic, and dielectric properties of Mn0. 3− x Cd x Cu0. 2Zn0. 5Fe2O4 nanoparticles. Journal of Materials Science: Materials in Electronics31(7), pp.5124-5140.
[21]  Hou, H., Xu, G., Tan, S. and Zhu, Y., 2017. A facile sol-gel strategy for the scalable synthesis of CuFe2O4 nanoparticles with enhanced infrared radiation property: influence of the synthesis conditions. Infrared Physics & Technology85, pp.261-265.
[22]  Gholizadeh, A. and Jafari, E., 2017. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere. Journal of Magnetism and Magnetic Materials422, pp.328-336.
[23]  Zhang, R., Yuan, Q., Ma, R., Liu, X., Gao, C., Liu, M., Jia, C.L. and Wang, H., 2017. Tuning conductivity and magnetism of CuFe2O4 via cation redistribution. RSC advances7(35), pp.21926-21932.
[24]  Kyono, A., Gramsch, S.A., Nakamoto, Y., Sakata, M., Kato, M., Tamura, T. and Yamanaka, T., 2015. High-pressure behavior of cuprospinel CuFe2O4: Influence of the Jahn-Teller effect on the spinel structure. American Mineralogist100(8-9), pp.1752-1761.
[25]  Abharya, A. and Gholizadeh, A., 2021. Synthesis of a Fe3O4-rGO-ZnO-catalyzed photo-Fenton system with enhanced photocatalytic performance. Ceramics International47(9), pp.12010-12019.
[26]  Tahir, M.B., 2021. Construction of visible light driven CuBi2O4/Bi2WO6 solid solutions anchored with Bi12O17ClxBr2− x nanoparticles for improved photocatalytic activity. Ceramics International47(1), pp.320-328.
[27]  Soleimani, F., Salehi, M. and Gholizadeh, A., 2017. Hydrothermal synthesis, structural and catalytic studies of CuBi2O4 nanoparticles. Journal of Nanoanalysis4(3), p.239.
[28]  Li, Z., Chen, M., Zhang, Q. and Tao, D., 2020. Mechanochemical synthesis of a Z-scheme Bi2WO6/CuBi2O4 heterojunction and its visible-light photocatalytic degradation of ciprofloxacin. Journal of Alloys and Compounds845, p.156291.
[29]  Soleimani, F., Salehi, M. and Gholizadeh, A., 2019. Comparison of visible light photocatalytic degradation of different pollutants by (Zn, Mg) xCu1-xBi2O4 nanoparticles. Ceramics International45(7), pp.8926-8939.
[30]  Wang, F., Yang, H. and Zhang, Y., 2018. Enhanced photocatalytic performance of CuBi2O4 particles decorated with Ag nanowires. Materials Science in Semiconductor Processing73, pp.58-66.
[31]  Xu, J., Zhu, Y., Liu, Z., Teng, X., Gao, H., Zhao, Y. and Chen, M., 2023. Synthesis of dual Z-scheme CuBi2O4/Bi2Sn2O7/Sn3O4 photocatalysts with enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Catalysts13(7), p.1028.
[32]  Huang, S., Wang, G., Liu, J., Du, C. and Su, Y., 2020. A novel CuBi2O4/BiOBr direct Z‐scheme photocatalyst for efficient antibiotics removal: synergy of adsorption and photocatalysis on degradation kinetics and mechanism insight. ChemCatChem12(17), pp.4431-4445.
[33]  Fu, S., Zhu, H., Huang, Q., Liu, X., Zhang, X. and Zhou, J., 2021. Construction of hierarchical CuBi2O4/Bi/BiOBr ternary heterojunction with Z-scheme mechanism for enhanced broad-spectrum photocatalytic activity. Journal of Alloys and Compounds878, p.160372.
[34]  Wu, S., Yu, X., Zhang, J., Zhang, Y., Zhu, Y. and Zhu, M., 2021. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal. Chemical Engineering Journal411, p.128555.
[35]  Huang, S., Zhang, J., Qin, Y., Song, F., Du, C. and Su, Y., 2021. Direct Z-scheme SnO2/Bi2Sn2O7 photocatalyst for antibiotics removal: Insight on the enhanced photocatalytic performance and promoted charge separation mechanism. Journal of Photochemistry and Photobiology A: Chemistry404, p.112947.
[36]  Wang, R., Zhu, P., Duan, M., Xu, J., Liu, M. and Luo, D., 2021. Synthesis and characterization of successive Z-scheme CdS/Bi2MoO6/BiOBr heterojunction photocatalyst with efficient performance for antibiotic degradation. Journal of Alloys and Compounds870, p.159385.
[37]  Majhi, D., Mishra, A.K., Das, K., Bariki, R. and Mishra, B.G., 2021. Plasmonic Ag nanoparticle decorated Bi2O3/CuBi2O4 photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr (VI) reduction: Insight into electron transfer mechanism and enhanced photocatalytic activity. Chemical Engineering Journal413, p.127506.
[38]  Wang, X., Su, N., Wang, X., Cao, D., Xu, C., Wang, X., Yan, Q., Lu, C. and Zhao, H., 2024. Fabrication of 0D/1D S-scheme CoO-CuBi2O4 heterojunction for efficient photocatalytic degradation of tetracycline by activating peroxydisulfate and product risk assessment. Journal of Colloid and Interface Science661, pp.943-956.
[39]  Ma, C., Ma, D.K., Yu, W., Chen, W. and Huang, S., 2019. Ag and N-doped graphene quantum dots co-modified CuBi2O4 submicron rod photocathodes with enhanced photoelectrochemical activity. Applied surface science481, pp.661-668.
[40]  Routray, K.L., Sanyal, D. and Behera, D., 2017. Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. Journal of Applied Physics122(22).
[41]  Saputro, D.E. and Purnama, B., 2019, February. XRD and FTIR analysis of bismuth substituted cobalt ferrite synthesized by co-precipitation method. In Journal of Physics: Conference Series (Vol. 1153, No. 1, p. 012057). IOP Publishing.
[42]  Jafari Fesharaki, M., Nabiyouni, G., Shahdoost, B. and Akhtarianfar, S.F., 2016. Magnetic Investigation of Various NiFe 2− x Bi x O 4 Ferrite Nanostructures Synthesized by Ball Milling Technique. Journal of Cluster Science, 27, pp.1005-1015.
[43]  Praveena, K., Radhika, B. and Srinath, S., 2014. Dielectric and magnetic properties of NiFe2-xBixO4 nanoparticles at microwave frequencies prepared via co-precipitation method. Procedia Engineering76, pp.1-7.
[44]  Isfahani, M.J.N., Isfahani, P.N., Da Silva, K.L., Feldhoff, A. and Šepelák, V., 2011. Structural and magnetic properties of NiFe2− xBixO4 (x= 0, 0.1, 0.15) nanoparticles prepared via sol–gel method. Ceramics International37(6), pp.1905-1909.
[45]  Sefatgol, R., Gholizadeh, A. and Hatefi, H., 2024. Effect of Ti Substitution on the Structural, Optical, and Magnetic Properties of Mn-Mg-Cu-Zn Ferrite Prepared by the Sol–Gel Route. Journal of Electronic Materials53(10), pp.6140-6150.
[46]  Noori, F. and Gholizadeh, A., 2020. Structural, optical, magnetic properties and visible light photocatalytic activity of BiFeO3/graphene oxide nanocomposites. Materials Research Express6(12), p.1250g1.
[47]  Adineh, Z. and Gholizadeh, A., 2024. Comparison of sol–gel and hydrothermal synthesis methods on the physical, and photocatalytic properties of Bi1− x Ce x Fe1− x Al x O3 ferrites. Journal of Materials Science: Materials in Electronics35(11), p.745.
[48]  Sefatgol, R., Gholizadeh, A. and Hatefi, H., 2024. Enhancement of magnetic properties of bismuth-substituted Mn-Mg-Cu-Zn ferrite prepared by sol-gel route. Journal of Sol-Gel Science and Technology, pp.1-14.
[49]  Mojahed, M., Dizaji, H.R. and Gholizadeh, A., 2022. Structural, magnetic, and dielectric properties of Ni/Zn co-substituted CuFe2O4 nanoparticles. Physica B: Condensed Matter646, p.414337.
[50]  Choupani, M. and Gholizadeh, A., 2024. Correlation between structural phase transition and physical properties of Co2+/Gd3+ co-substituted copper ferrite. Journal of Rare Earths42(7), pp.1344-1353.
[51]  Mojahed, M., Gholizadeh, A. and Dizaji, H.R., 2024. Influence of Ti4+ substitution on the structural, magnetic, and dielectric properties of Ni-Cu–Zn ferrite. Journal of Materials Science: Materials in Electronics35(18), p.1239.
[52]  Harish, V., Ansari, M.M., Tewari, D., Gaur, M., Yadav, A.B., García-Betancourt, M.L., Abdel-Haleem, F.M., Bechelany, M. and Barhoum, A., 2022. Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials12(18), p.3226.
[53]  Gao, H., Wang, F., Wang, S., Wang, X., Yi, Z. and Yang, H., 2019. Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Materials Research Bulletin115, pp.140-149.
[53]  Gao, H., Wang, F., Wang, S., Wang, X., Yi, Z. and Yang, H., 2019. Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Materials Research Bulletin115, pp.140-149.
[54]  Guo, F., Li, M., Ren, H., Huang, X., Hou, W., Wang, C., Shi, W. and Lu, C., 2019. Fabrication of pn CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation. Applied Surface Science491, pp.88-94.
[55]  Gholizadeh, A. and Malekzadeh, A., 2017. Structural and redox features of La0. 7Bi0. 3Mn1− xCoxO3 nanoperovskites for ethane combustion and CO oxidation. International Journal of Applied Ceramic Technology14(3), pp.404-412.
[56]  Hosseini, S. and Gholizadeh, A., 2023. Optimizing physical properties of BiFe1-xMnxO3 perovskite thin films via a low-temperature sol-gel method. Ceramics International49(24), pp.40258-40267.
[57]  Kumar, S., Kumari, K., Kumar, A., Koo, B.H. and Vij, A., 2023. Raman spectroscopy of spinel ferrites. In Ferrite Nanostructured Magnetic Materials (pp. 537-555). Woodhead Publishing.
[58]  Shah, A.K., Sahu, T.K., Banik, A., Gogoi, D., Peela, N.R. and Qureshi, M., 2019. Reduced graphene oxide modified CuBi2O4 as an efficient and noble metal free photocathode for superior photoelectrochemical hydrogen production. Sustainable Energy & Fuels3(6), pp.1554-1561.
[59]  Faramawy, A.M. and El-Sayed, H.M., 2024. Enhancement of magnetization and optical properties of CuFe2O4/ZnFe2O4 core/shell nanostructure. Scientific Reports14(1), p.6935.
[60]  Adineh, Z. and Gholizadeh, A., 2021. Hydrothermal synthesis of Ce/Zr co-substituted BiFeO3: R 3 c-to-P 4 mm phase transition and enhanced room temperature ferromagnetism. Journal of Materials Science: Materials in Electronics32(22), pp.26929-26943.
[61]  Devi, E.C. and Singh, S.D., 2023. Law of approach to saturation magnetization with structural and temperature variation in Ni–Zn ferrites. Physica Scripta98(5), p.055938.
[62]  Kurian, J. and Mathew, M.J., 2017. A facile approach to the elucidation of magnetic parameters of CuFe2O4 nanoparticles synthesized by hydrothermal route. Journal of Magnetism and Magnetic Materials428, pp.204-212.
[63]  Spaldin, N.A., 2010. Magnetic materials: fundamentals and applications. Cambridge university press.