[1] Muzaffar, A., Ahamed, M.B. and Hussain, C.M., 2024. Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability. Renewable and Sustainable Energy Reviews, 195, p.114324.
[2] Gupta, G.K., Sagar, P., Srivastava, M., Singh, A.K., Singh, J., Srivastava, S.K. and Srivastava, A., 2021. Excellent supercapacitive performance of graphene quantum dots derived from a bio-waste marigold flower (Tagetes erecta). International Journal of Hydrogen Energy, 46(77), pp.38416-38424.
[3] Kumar, Y.A., Roy, N., Ramachandran, T., Hussien, M., Moniruzzaman, M. and Joo, S.W., 2024. Shaping the future of energy: The rise of supercapacitors progress in the last five years. Journal of Energy Storage, 98, p.113040.
[4] Gupta, G.K., Sagar, P., Srivastava, M., Singh, A.K., Singh, J., Srivastava, S.K. and Srivastava, A., 2024. Hydrothermally synthesized nickel ferrite nanoparticles integrated reduced graphene oxide nanosheets as an electrode material for supercapacitors. Journal of Materials Science: Materials in Electronics, 35(3), p.255.
[5] Nawwar, M., Poon, R., Chen, R., Sahu, R.P., Puri, I.K. and Zhitomirsky, I., 2019. High areal capacitance of Fe3O4‐decorated carbon nanotubes for supercapacitor electrodes. Carbon Energy, 1(1), pp.124-133.
[6] Polat, S., Mashrah, M. and Maksur, A., 2024. Evaluation of weight, area, and volumetric specific capacitance performance of high graphene content ZnFe2O4 electrode for supercapacitors. Transactions on Electrical and Electronic Materials, pp.1-10.
[7] Zhang, W., Shi, J., Webster, R., Li, W. and Li, S., 2024. High-density spherical nanocarbon clusters for pouch-type ionic liquid supercapacitors with high volumetric energy density and rate performance. Journal of Energy Storage, 85, p.111101.
[8] Xue, C.F., Lin, Y., Zhao, W., Wu, T., Wei, Y.Y., Li, X.H., Yan, W.J. and Hao, X.G., 2024. Green preparation of high active biochar with tetra-heteroatom self-doped surface for aqueous electrochemical supercapacitor with boosted energy density. Journal of Energy Storage, 90, p.111872.
[9] Kishore, S.C., Perumal, S., Atchudan, R., Edison, T.N.J.I., Sundramoorthy, A.K., Manoj, D., Alagan, M., Kumar, R.S., Almansour, A.I., Sangaraju, S. and Lee, Y.R., 2024. Sustainable synthesis of spongy-like porous carbon for supercapacitive energy storage systems towards pollution control. Environmental Science and Pollution Research, pp.1-12.
[10] Geng, D., Yang, S., Zhang, Y., Yang, J., Liu, J., Li, R., Sham, T.K., Sun, X., Ye, S. and Knights, S., 2011. Nitrogen doping effects on the structure of graphene. Applied Surface Science, 257(21), pp.9193-9198.
[11] Dan, M., Vulcu, A., Porav, S.A., Leostean, C., Borodi, G., Cadar, O. and Berghian-Grosan, C., 2021. Eco-friendly nitrogen-doped graphene preparation and design for the oxygen reduction reaction. Molecules, 26(13), p.3858.
[12] Ali, M.E.A., Aboelfadl, M.M.S., Selim, A.M., Khalil, H.F. and Elkady, G.M., 2018. Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe (II) and Mn (II) from aqueous phases. Separation Science and Technology, 53(18), pp.2870-2881.
[13] Anush, S.M., Chandan, H.R., Gayathri, B.H., Manju, N., Vishalakshi, B. and Kalluraya, B., 2020. Graphene oxide functionalized chitosan-magnetite nanocomposite for removal of Cu (II) and Cr (VI) from waste water. International Journal of Biological Macromolecules, 164, pp.4391-4402.
[14] Clark, G.L. and Smith, A.F., 2002. X-ray Diffraction Studies of Chitin, Chitosan, and Derivatives. The Journal of Physical Chemistry, 40(7), pp.863-879.
[15] Sudhakar, S., Jaiswal, K.K., Peera, S.G. and Ramaswamy, A.P., 2017. Green synthesis of N-graphene by hydrothermal-microwave irradiation for alkaline fuel cell application. Int. J. Recent Sci. Res, 8, pp.19049-19053.
[16] Kumar, M.P., Kesavan, T., Kalita, G., Ragupathy, P., Narayanan, T.N. and Pattanayak, D.K., 2014. On the large capacitance of nitrogen doped graphene derived by a facile route. RSC advances, 4(73), pp.38689-38697.
[17] Khan, A., Goepel, M., Colmenares, J.C. and Gläser, R., 2020. Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications. ACS Sustainable Chemistry & Engineering, 8(12), pp.4708-4727.
[18] Gorgieva, S., Osmić, A., Hribernik, S., Božič, M., Svete, J., Hacker, V., Wolf, S. and Genorio, B., 2021. Efficient chitosan/nitrogen-doped reduced graphene oxide composite membranes for direct alkaline ethanol fuel cells. International journal of molecular sciences, 22(4), p.1740.
[19] Mallakpour, S. and Khadem, E., 2018. Construction of crosslinked chitosan/nitrogen-doped graphene quantum dot nanocomposite for hydroxyapatite biomimetic mineralization. International journal of biological macromolecules, 120, pp.1451-1460.
[20] Kumar, S., Gonen, S., Friedman, A., Elbaz, L. and Nessim, G.D., 2017. Doping and reduction of graphene oxide using chitosan-derived volatile N-heterocyclic compounds for metal-free oxygen reduction reaction. Carbon, 120, pp.419-426.
[21] Fang, Y., Zhang, Q. and Cui, L., 2021. Recent progress of mesoporous materials for high performance supercapacitors. Microporous and Mesoporous Materials, 314, p.110870.
[22] White, R.J. ed., 2015. Porous carbon materials from sustainable precursors. Royal Society of Chemistry.
[23] Pathak, M., Bhatt, D., Bhatt, R.C., Bohra, B.S., Tatrari, G., Rana, S., Arya, M.C. and Sahoo, N.G., 2024. High energy density supercapacitors: an overview of efficient electrode materials, electrolytes, design, and fabrication. The Chemical Record, 24(1), p.e202300236.
[24] Lan, Y. and Changshi, L., 2024. Reliably and accurately estimate energy in super-capacitor via a model of cyclic voltammetry. Journal of Energy Storage, 75, p.109688.
[25] Zhang, S. and Pan, N., 2015. Supercapacitors performance evaluation. Advanced Energy Materials, 5(6), p.1401401.
[26] Sharma, P. and Kumar, V., 2020. Current technology of supercapacitors: A review. Journal of Electronic Materials, 49(6), pp.3520-3532.
[27] Bard, A.J. and Faulkner, L.R., 1983. Electrochemical methods: fundamentals and applications. Surf. Technol, 20(1), pp.91-92.
[28] Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T. and Dempsey, J.L., 2018. A practical beginner’s guide to cyclic voltammetry. Journal of chemical education, 95(2), pp.197-206.
[29] McCreery, R.L., 2008. Advanced carbon electrode materials for molecular electrochemistry. Chemical reviews, 108(7), pp.2646-2687.
[30] Bard, A.J., Faulkner, L.R. and White, H.S., 2022. Electrochemical methods: fundamentals and applications. John Wiley & Sons.
[31] Rafiee, M., Abrams, D.J., Cardinale, L., Goss, Z., Romero-Arenas, A. and Stahl, S.S., 2024. Cyclic voltammetry and chronoamperometry: mechanistic tools for organic electrosynthesis. Chemical Society Reviews.
[32] Jara-Palacios, M.J., Begines, E., Heredia, F.J., Escudero-Gilete, M.L. and Hernanz, D., 2024. Effectiveness of Cyclic Voltammetry in Evaluation of the Synergistic Effect of Phenolic and Amino Acids Compounds on Antioxidant Activity: Optimization of Electrochemical Parameters. Foods, 13(6), p.906.
[33] Pholauyphon, W., Charoen-amornkitt, P., Suzuki, T. and Tsushima, S., 2024. Guidelines for supercapacitor electrochemical analysis: a comprehensive review of methodologies for finding charge storage mechanisms. Journal of Energy Storage, 98, p.112833.
[34] Brett, C.M. and Brett, O., 1993. Principles, methods, and applications. Electrochemistry, 67(2), p.444.
[35] Bard, A.J., Faulkner, L.R. and White, H.S., 2022. Electrochemical methods: fundamentals and applications. John Wiley & Sons.
[36] Zheng, X., Yu, H., Xing, R., Ge, X., Sun, H., Li, R. and Zhang, Q., 2018. Multi-growth site graphene/polyaniline composites with highly enhanced specific capacitance and rate capability for supercapacitor application. Electrochimica Acta, 260, pp.504-513.
[37] Panchal, K., Bhakar, K., Sharma, K.S., Kumar, D. and Prasad, S., 2024. Review on electrochemical impedance spectroscopy: a technique applied to hollow structured materials for supercapacitor and sensing applications. Applied Spectroscopy Reviews, pp.1-26.
[38] Reaz, A.H., Saha, S., Roy, C.K., Hosen, M.M., Shuvo, T.S., Islam, M.M. and Firoz, S.H., 2022. Performance improvement of supercapacitor materials with crushed 3D structured graphene. Journal of The Electrochemical Society, 169(1), p.010521.
[39] Ali, G.A., Supriya, S., Chong, K.F., Shaaban, E.R., Algarni, H., Maiyalagan, T. and Hegde, G., 2021. Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Conversion and Biorefinery, 11, pp.1311-1323.
[40] Wang, G., Zhang, L. and Zhang, J., 2012. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), pp.797-828.
[41] Singh, A., Ghosh, K., Kumar, S., Agarwal, A.K., Jassal, M., Goswami, P. and Chaturvedi, H., 2019. Interdigitated flexible supercapacitor using activated carbon synthesized from biomass for wearable energy storage. arXiv preprint arXiv:1903.02384.
[42] Yu, S., Yang, N., Vogel, M., Mandal, S., Williams, O.A., Jiang, S., Schönherr, H., Yang, B. and Jiang, X., 2018. Battery‐like supercapacitors from vertically aligned carbon nanofiber coated diamond: design and demonstrator. Advanced Energy Materials, 8(12), p.1702947.
[43] Tanapongpisit, N., Wongprasod, S., Laohana, P., Sonsupap, S., Khajonrit, J., Musikajaroen, S., Wongpratat, U., Yotburut, B., Maensiri, S., Meevasana, W. and Saenrang, W., 2024. Enhancing activated carbon supercapacitor electrodes using sputtered Cu-doped BiFeO3 thin films. Scientific Reports, 14(1), p.27811.