Hydrothermal Synthesis of Chitosan Nitrogen-Doped Graphene for Supercapacitors Applications

Document Type : Original Article

Authors

1 Nano Research lab, Physics Department, Faculty of Science, Central Tehran Branch, Islamic Azad university

2 Department of Physics, Central Tehran Branch, Islamic Azad University

Abstract

In this paper, a chitosan nitrogen-doped graphene (CNGO) electrode is synthesized by using carbon paper (CP). This electrode demonstrates enhanced electrochemical properties as a supercapacitor electrode compared to CP. The CNGO nanocomposite is synthesized using a hydrothermal method and is deposited on CP via dip coating method. To characterize the CNGO nanocomposite, X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy (EDS) mapping analyses are performed. The electrochemical properties of the electrodes are studied through cyclic voltammetry, galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy. The specific capacitance is increased from  for the CP to  for the CNGO electrodes at a current density of  . The reversibility ratio is calculated to be 0.89 and 0.94 for CP and CNGO electrodes, respectively. The proposed electrode demonstrates exceptional performance due to its outstanding stability and durability over extended cycling, as evidenced by its 100% capacitance retention after 1100 charge-discharge cycles. This remarkable retention highlights its ability to maintain consistent electrochemical properties under prolonged and repetitive operational conditions. The results indicate that the presence of CNGO nanocomposite on CP enhances the electrochemical properties of the electrode. 

Keywords

Main Subjects


[1]    Muzaffar, A., Ahamed, M.B. and Hussain, C.M., 2024. Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability. Renewable and Sustainable Energy Reviews195, p.114324.
[2]    Gupta, G.K., Sagar, P., Srivastava, M., Singh, A.K., Singh, J., Srivastava, S.K. and Srivastava, A., 2021. Excellent supercapacitive performance of graphene quantum dots derived from a bio-waste marigold flower (Tagetes erecta). International Journal of Hydrogen Energy46(77), pp.38416-38424.
[3]    Kumar, Y.A., Roy, N., Ramachandran, T., Hussien, M., Moniruzzaman, M. and Joo, S.W., 2024. Shaping the future of energy: The rise of supercapacitors progress in the last five years. Journal of Energy Storage98, p.113040.
[4]    Gupta, G.K., Sagar, P., Srivastava, M., Singh, A.K., Singh, J., Srivastava, S.K. and Srivastava, A., 2024. Hydrothermally synthesized nickel ferrite nanoparticles integrated reduced graphene oxide nanosheets as an electrode material for supercapacitors. Journal of Materials Science: Materials in Electronics35(3), p.255.
[5]    Nawwar, M., Poon, R., Chen, R., Sahu, R.P., Puri, I.K. and Zhitomirsky, I., 2019. High areal capacitance of Fe3O4‐decorated carbon nanotubes for supercapacitor electrodes. Carbon Energy, 1(1), pp.124-133.
[6]    Polat, S., Mashrah, M. and Maksur, A., 2024. Evaluation of weight, area, and volumetric specific capacitance performance of high graphene content ZnFe2O4 electrode for supercapacitors. Transactions on Electrical and Electronic Materials, pp.1-10.
[7]    Zhang, W., Shi, J., Webster, R., Li, W. and Li, S., 2024. High-density spherical nanocarbon clusters for pouch-type ionic liquid supercapacitors with high volumetric energy density and rate performance. Journal of Energy Storage85, p.111101.
[8]    Xue, C.F., Lin, Y., Zhao, W., Wu, T., Wei, Y.Y., Li, X.H., Yan, W.J. and Hao, X.G., 2024. Green preparation of high active biochar with tetra-heteroatom self-doped surface for aqueous electrochemical supercapacitor with boosted energy density. Journal of Energy Storage90, p.111872.
[9]    Kishore, S.C., Perumal, S., Atchudan, R., Edison, T.N.J.I., Sundramoorthy, A.K., Manoj, D., Alagan, M., Kumar, R.S., Almansour, A.I., Sangaraju, S. and Lee, Y.R., 2024. Sustainable synthesis of spongy-like porous carbon for supercapacitive energy storage systems towards pollution control. Environmental Science and Pollution Research, pp.1-12.
[10]  Geng, D., Yang, S., Zhang, Y., Yang, J., Liu, J., Li, R., Sham, T.K., Sun, X., Ye, S. and Knights, S., 2011. Nitrogen doping effects on the structure of graphene. Applied Surface Science, 257(21), pp.9193-9198.
[11]  Dan, M., Vulcu, A., Porav, S.A., Leostean, C., Borodi, G., Cadar, O. and Berghian-Grosan, C., 2021. Eco-friendly nitrogen-doped graphene preparation and design for the oxygen reduction reaction. Molecules, 26(13), p.3858.
[12]  Ali, M.E.A., Aboelfadl, M.M.S., Selim, A.M., Khalil, H.F. and Elkady, G.M., 2018. Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe (II) and Mn (II) from aqueous phases. Separation Science and Technology, 53(18), pp.2870-2881.
[13]  Anush, S.M., Chandan, H.R., Gayathri, B.H., Manju, N., Vishalakshi, B. and Kalluraya, B., 2020. Graphene oxide functionalized chitosan-magnetite nanocomposite for removal of Cu (II) and Cr (VI) from waste water. International Journal of Biological Macromolecules, 164, pp.4391-4402.
[14]  Clark, G.L. and Smith, A.F., 2002. X-ray Diffraction Studies of Chitin, Chitosan, and Derivatives. The Journal of Physical Chemistry, 40(7), pp.863-879.
[15]  Sudhakar, S., Jaiswal, K.K., Peera, S.G. and Ramaswamy, A.P., 2017. Green synthesis of N-graphene by hydrothermal-microwave irradiation for alkaline fuel cell application. Int. J. Recent Sci. Res, 8, pp.19049-19053.
[16]  Kumar, M.P., Kesavan, T., Kalita, G., Ragupathy, P., Narayanan, T.N. and Pattanayak, D.K., 2014. On the large capacitance of nitrogen doped graphene derived by a facile route. RSC advances, 4(73), pp.38689-38697.
[17]  Khan, A., Goepel, M., Colmenares, J.C. and Gläser, R., 2020. Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications. ACS Sustainable Chemistry & Engineering, 8(12), pp.4708-4727.
[18]  Gorgieva, S., Osmić, A., Hribernik, S., Božič, M., Svete, J., Hacker, V., Wolf, S. and Genorio, B., 2021. Efficient chitosan/nitrogen-doped reduced graphene oxide composite membranes for direct alkaline ethanol fuel cells. International journal of molecular sciences, 22(4), p.1740.
[19]  Mallakpour, S. and Khadem, E., 2018. Construction of crosslinked chitosan/nitrogen-doped graphene quantum dot nanocomposite for hydroxyapatite biomimetic mineralization. International journal of biological macromolecules, 120, pp.1451-1460.
[20]  Kumar, S., Gonen, S., Friedman, A., Elbaz, L. and Nessim, G.D., 2017. Doping and reduction of graphene oxide using chitosan-derived volatile N-heterocyclic compounds for metal-free oxygen reduction reaction. Carbon, 120, pp.419-426.
[21]  Fang, Y., Zhang, Q. and Cui, L., 2021. Recent progress of mesoporous materials for high performance supercapacitors. Microporous and Mesoporous Materials, 314, p.110870.
[22]  White, R.J. ed., 2015. Porous carbon materials from sustainable precursors. Royal Society of Chemistry.
[23]  Pathak, M., Bhatt, D., Bhatt, R.C., Bohra, B.S., Tatrari, G., Rana, S., Arya, M.C. and Sahoo, N.G., 2024. High energy density supercapacitors: an overview of efficient electrode materials, electrolytes, design, and fabrication. The Chemical Record, 24(1), p.e202300236.
[24]  Lan, Y. and Changshi, L., 2024. Reliably and accurately estimate energy in super-capacitor via a model of cyclic voltammetry. Journal of Energy Storage75, p.109688.
[25]  Zhang, S. and Pan, N., 2015. Supercapacitors performance evaluation. Advanced Energy Materials, 5(6), p.1401401.
[26]  Sharma, P. and Kumar, V., 2020. Current technology of supercapacitors: A review. Journal of Electronic Materials, 49(6), pp.3520-3532.
[27]  Bard, A.J. and Faulkner, L.R., 1983. Electrochemical methods: fundamentals and applications. Surf. Technol, 20(1), pp.91-92.
[28]  Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T. and Dempsey, J.L., 2018. A practical beginner’s guide to cyclic voltammetry. Journal of chemical education, 95(2), pp.197-206.
[29]  McCreery, R.L., 2008. Advanced carbon electrode materials for molecular electrochemistry. Chemical reviews, 108(7), pp.2646-2687.
[30]  Bard, A.J., Faulkner, L.R. and White, H.S., 2022. Electrochemical methods: fundamentals and applications. John Wiley & Sons.
[31]  Rafiee, M., Abrams, D.J., Cardinale, L., Goss, Z., Romero-Arenas, A. and Stahl, S.S., 2024. Cyclic voltammetry and chronoamperometry: mechanistic tools for organic electrosynthesis. Chemical Society Reviews.
[32]  Jara-Palacios, M.J., Begines, E., Heredia, F.J., Escudero-Gilete, M.L. and Hernanz, D., 2024. Effectiveness of Cyclic Voltammetry in Evaluation of the Synergistic Effect of Phenolic and Amino Acids Compounds on Antioxidant Activity: Optimization of Electrochemical Parameters. Foods13(6), p.906.
[33]  Pholauyphon, W., Charoen-amornkitt, P., Suzuki, T. and Tsushima, S., 2024. Guidelines for supercapacitor electrochemical analysis: a comprehensive review of methodologies for finding charge storage mechanisms. Journal of Energy Storage98, p.112833.
[34]  Brett, C.M. and Brett, O., 1993. Principles, methods, and applications. Electrochemistry, 67(2), p.444.
[35]  Bard, A.J., Faulkner, L.R. and White, H.S., 2022. Electrochemical methods: fundamentals and applications. John Wiley & Sons.
[36]  Zheng, X., Yu, H., Xing, R., Ge, X., Sun, H., Li, R. and Zhang, Q., 2018. Multi-growth site graphene/polyaniline composites with highly enhanced specific capacitance and rate capability for supercapacitor application. Electrochimica Acta260, pp.504-513.
[37]  Panchal, K., Bhakar, K., Sharma, K.S., Kumar, D. and Prasad, S., 2024. Review on electrochemical impedance spectroscopy: a technique applied to hollow structured materials for supercapacitor and sensing applications. Applied Spectroscopy Reviews, pp.1-26.
[38]  Reaz, A.H., Saha, S., Roy, C.K., Hosen, M.M., Shuvo, T.S., Islam, M.M. and Firoz, S.H., 2022. Performance improvement of supercapacitor materials with crushed 3D structured graphene. Journal of The Electrochemical Society, 169(1), p.010521.
[39]  Ali, G.A., Supriya, S., Chong, K.F., Shaaban, E.R., Algarni, H., Maiyalagan, T. and Hegde, G., 2021. Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Conversion and Biorefinery, 11, pp.1311-1323.
[40]  Wang, G., Zhang, L. and Zhang, J., 2012. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), pp.797-828.
[41]  Singh, A., Ghosh, K., Kumar, S., Agarwal, A.K., Jassal, M., Goswami, P. and Chaturvedi, H., 2019. Interdigitated flexible supercapacitor using activated carbon synthesized from biomass for wearable energy storage. arXiv preprint arXiv:1903.02384.
[42]  Yu, S., Yang, N., Vogel, M., Mandal, S., Williams, O.A., Jiang, S., Schönherr, H., Yang, B. and Jiang, X., 2018. Battery‐like supercapacitors from vertically aligned carbon nanofiber coated diamond: design and demonstrator. Advanced Energy Materials, 8(12), p.1702947.
[43]  Tanapongpisit, N., Wongprasod, S., Laohana, P., Sonsupap, S., Khajonrit, J., Musikajaroen, S., Wongpratat, U., Yotburut, B., Maensiri, S., Meevasana, W. and Saenrang, W., 2024. Enhancing activated carbon supercapacitor electrodes using sputtered Cu-doped BiFeO3 thin films. Scientific Reports, 14(1), p.27811.