The Effect of Gap Fluctuations on Specific Heat of a Superconducting Nanograin

Document Type : Original Article

Authors

1 Department of physics, Faculty of Basic Sciences, Shahed University

2 Department of Physics, Faculty of Basic Sciences, Shahed University

Abstract

Recently, the finite size effects, via superconducting nanograins, have attracted much attention from physicists. The effect of the small size can enter via the interaction matrix element and the spectral energy. We suppose that the mean level spacing near the Fermi energy is smaller than the bulk gap, allowing the BCS formalism to remain a valid approximation. For a nanograin, the gap function, in general, depends on the size of the system, and the Fermi energy. By entering the effect of the small size on the gap equation for a rectangular nanograin, specific heat in terms of temperature and length of a superconducting nanograin is obtained. Our results reveal that the spectral energy of the nanograin does not affect the change in the behavior of specific heat. However, the effect of the energy gap of nanograin strongly affects the behavior of specific heat. One of the interesting results is that at some fixed temperatures, the behaviour of specific heat shows a peak in a special length. Also, we compare specific heat in 2- and 3-dimensional cases.

Keywords

Main Subjects


[1]    Anderson, P.W., 1959. Theory of dirty superconductors. Journal of Physics and Chemistry of Solids11(1-2), pp.26-30.
[2]    Black, C.T., Ralph, D.C. and Tinkham, M., 1996. Spectroscopy of the superconducting gap in individual nanometer-scale aluminum particles. Physical review letters76(4), p.688.
[3]    Von Delft, J. and Ralph, D.C., 2001. Spectroscopy of discrete energy levels in ultrasmall metallic grains. Physics Reports345(2-3), pp.61-173.
[4]    Richardson, R., Sherman, N., 1964. Pairing models of Pb206, Pb204 and Pb202.  Nucl. Phys., 52, p. 253.
[5]    Brack, M. and Bhaduri, R.K., 1997. Semiclassical Physics Addison.
[6]    Balian, R. and Bloch, C., 1971. Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces. Annals of Physics64(1), pp.271-307.
[7]    Parmenter, R.H., 1968. Size effect in a granular superconductor. Physical Review166(2), p.392.
[8]    Blatt, J.M. and Thompson, C.J., 1963. Shape resonances in superconducting thin films. Physical Review Letters10(8), p.332.
[9]    Mühlschlegel, B., Scalapino, D.J. and Denton, R., 1972. Thermodynamic properties of small superconducting particles. Physical Review B6(5), p.1767.
[10]  Bardeen, J., Cooper, L.N. and Schrieffer, J.R., 1957. Theory of superconductivity. Physical review108(5), p.1175.
[11]  Abeles, B., Cohen, R.W. and Cullen, G.W., 1966. Enhancement of superconductivity in metal films. Physical Review Letters17(12), p.632.
[12]  Giaever, I. and Zeller, H.R., 1968. Superconductivity of small tin particles measured by tunneling. Physical Review Letters20(26), p.1504.
[13]  Ohshima, K., Kuroishi, T. and Fujita, T., 1976. Superconducting transition temperature of aluminium fine particles. Journal of the Physical Society of Japan41(4), pp.1234-1236.
[14]  Tsuboi, T. and Suzuki, T., 1977. Specific heat of superconducting fine particles of tin. I. Fluctuations in zero magnetic field. Journal of the Physical Society of Japan42(2), pp.437-444.
[15]  Matsuo, S., Sugiura, H. and Noguchi, S., 1974. Superconducting transition temperature of aluminum, indium, and lead fine particles. Journal of Low Temperature Physics15, pp.481-490.
[16]  Abeles, B., Sheng, P., Coutts, M.D. and Arie, Y., 1975. Structural and electrical properties of granular metal films. Advances in Physics24(3), pp.407-461.
[17]  Shapira, Y. and Deutscher, G., 1983. Semiconductor-superconductor transition in granular Al-Ge. Physical Review B27(7), p.4463.
[18]  Li, W.H., Yang, C.C., Tsao, F.C. and Lee, K.C., 2003. Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles. Physical Review B68(18), p.184507.
[19]  Li, W.H., Yang, C.C., Tsao, F.C., Wu, S.Y., Huang, P.J., Chung, M.K. and Yao, Y.D., 2005. Enhancement of superconductivity by the small size effect in In nanoparticles. Physical Review B—Condensed Matter and Materials Physics72(21), p.214516.
[20]  Bose, S., Raychaudhuri, P., Banerjee, R., Vasa, P. and Ayyub, P., 2005. Mechanism of the size dependence of the superconducting transition of nanostructured Nb. Physical review letters95(14), p.147003.
[21]  Li, W.H., Wang, C.W., Li, C.Y., Hsu, C.K., Yang, C.C. and Wu, C.M., 2008. Coexistence of ferromagnetism and superconductivity in Sn nanoparticles. Physical Review B—Condensed Matter and Materials Physics77(9), p.094508.
[22]  Bose, S., Galande, C., Chockalingam, S.P., Banerjee, R., Raychaudhuri, P. and Ayyub, P., 2009. Competing effects of surface phonon softening and quantum size effects on thesuperconducting properties of nanostructured Pb. Journal of Physics: Condensed Matter21(20), p.205702.
[23]  Jin, Y., Song, X. and Zhang, D., 2009. Grain-size dependence of superconductivity in dc sputtered Nb films. Science in China Series G: Physics, Mechanics and Astronomy52(9), pp.1289-1292.
[24]  Delacour, C., Ortega, L., Faucher, M., Crozes, T., Fournier, T., Pannetier, B. and Bouchiat, V., 2011. Persistence of superconductivity in niobium ultrathin films grown on R-plane sapphire. Physical Review B—Condensed Matter and Materials Physics83(14), p.144504.
[25]  Reich, S., Leitus, G., Popovitz-Biro, R. and Schechter, M., 2003. Magnetization of small lead particles. Physical review letters91(14), p.147001.
[26]  Kresin, V.Z. and Tavger, B.A., 1966. Superconducting transition temperature of a thin film. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (USSR) For English translation see Sov. Phys.-JETP (Engl. Transl.)50.
[27]  Brihuega, I., García-García, A.M., Ribeiro, P., Ugeda, M.M., Michaelis, C.H., Bose, S. and Kern, K., 2011. Experimental observation of thermal fluctuations in single superconducting Pb nanoparticles through tunneling measurements. Physical Review B—Condensed Matter and Materials Physics, 84(10), p.104525.
[28]  Liu, J., Wu, X., Ming, F., Zhang, X., Wang, K., Wang, B. and Xiao, X., 2011. Size-dependent superconducting state of individual nanosized Pb islands grown on Si (111) by tunneling spectroscopy. Journal of Physics: Condensed Matter23(26), p.265007.
[29]  Romero-Bermúdez, A. and Garcia-Garcia, A.M., 2014. Size effects in superconducting thin films coupled to a substrate. Physical Review B89(6), p.064508.
[30]  Gordon, J.E., Tan, M.L., Fisher, R.A. and Phillips, N.E., 1989. Specific heat data of high-Tc superconductors: Lattice and electronic contributions. Solid state communications69(6), pp.625-629.
[31]  Chou, C., White, D. and Johnston, H.L., 1958. Heat capacity in the normal and superconducting states and critical field of niobium. Physical Review109(3), p.788.
[32]  Wen, H.H., 2020. Specific heat in superconductors. Chinese Physics B29(1), p.017401.
[33]  Jiang, C., Zaccone, A., Setty, C. and Baggioli, M., 2023. Glassy heat capacity from overdamped phasons and hypothetical phason-induced superconductivity in incommensurate structures. Physical Review B108(5), p.054203.
[34]  García-García, A.M., Urbina, J.D., Yuzbashyan, E.A., Richter, K. and Altshuler, B.L., 2011. BCS superconductivity in metallic nanograins: Finite-size corrections, low-energy excitations, and robustness of shell effects. Physical Review B—Condensed Matter and Materials Physics83(1), p.014510.
[35]  De Gennes, P.G., 2018. Superconductivity of metals and alloys. CRC press.
[36]  Ketterson, J.B. and Song, S.N., 1999. Superconductivity. Cambridge university press.