[1] Anderson, P.W., 1959. Theory of dirty superconductors. Journal of Physics and Chemistry of Solids, 11(1-2), pp.26-30.
[2] Black, C.T., Ralph, D.C. and Tinkham, M., 1996. Spectroscopy of the superconducting gap in individual nanometer-scale aluminum particles. Physical review letters, 76(4), p.688.
[3] Von Delft, J. and Ralph, D.C., 2001. Spectroscopy of discrete energy levels in ultrasmall metallic grains. Physics Reports, 345(2-3), pp.61-173.
[4] Richardson, R., Sherman, N., 1964. Pairing models of Pb206, Pb204 and Pb202. Nucl. Phys., 52, p. 253.
[5] Brack, M. and Bhaduri, R.K., 1997. Semiclassical Physics Addison.
[6] Balian, R. and Bloch, C., 1971. Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces. Annals of Physics, 64(1), pp.271-307.
[7] Parmenter, R.H., 1968. Size effect in a granular superconductor. Physical Review, 166(2), p.392.
[8] Blatt, J.M. and Thompson, C.J., 1963. Shape resonances in superconducting thin films. Physical Review Letters, 10(8), p.332.
[9] Mühlschlegel, B., Scalapino, D.J. and Denton, R., 1972. Thermodynamic properties of small superconducting particles. Physical Review B, 6(5), p.1767.
[10] Bardeen, J., Cooper, L.N. and Schrieffer, J.R., 1957. Theory of superconductivity. Physical review, 108(5), p.1175.
[11] Abeles, B., Cohen, R.W. and Cullen, G.W., 1966. Enhancement of superconductivity in metal films. Physical Review Letters, 17(12), p.632.
[12] Giaever, I. and Zeller, H.R., 1968. Superconductivity of small tin particles measured by tunneling. Physical Review Letters, 20(26), p.1504.
[13] Ohshima, K., Kuroishi, T. and Fujita, T., 1976. Superconducting transition temperature of aluminium fine particles. Journal of the Physical Society of Japan, 41(4), pp.1234-1236.
[14] Tsuboi, T. and Suzuki, T., 1977. Specific heat of superconducting fine particles of tin. I. Fluctuations in zero magnetic field. Journal of the Physical Society of Japan, 42(2), pp.437-444.
[15] Matsuo, S., Sugiura, H. and Noguchi, S., 1974. Superconducting transition temperature of aluminum, indium, and lead fine particles. Journal of Low Temperature Physics, 15, pp.481-490.
[16] Abeles, B., Sheng, P., Coutts, M.D. and Arie, Y., 1975. Structural and electrical properties of granular metal films. Advances in Physics, 24(3), pp.407-461.
[17] Shapira, Y. and Deutscher, G., 1983. Semiconductor-superconductor transition in granular Al-Ge. Physical Review B, 27(7), p.4463.
[18] Li, W.H., Yang, C.C., Tsao, F.C. and Lee, K.C., 2003. Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles. Physical Review B, 68(18), p.184507.
[19] Li, W.H., Yang, C.C., Tsao, F.C., Wu, S.Y., Huang, P.J., Chung, M.K. and Yao, Y.D., 2005. Enhancement of superconductivity by the small size effect in In nanoparticles. Physical Review B—Condensed Matter and Materials Physics, 72(21), p.214516.
[20] Bose, S., Raychaudhuri, P., Banerjee, R., Vasa, P. and Ayyub, P., 2005. Mechanism of the size dependence of the superconducting transition of nanostructured Nb. Physical review letters, 95(14), p.147003.
[21] Li, W.H., Wang, C.W., Li, C.Y., Hsu, C.K., Yang, C.C. and Wu, C.M., 2008. Coexistence of ferromagnetism and superconductivity in Sn nanoparticles. Physical Review B—Condensed Matter and Materials Physics, 77(9), p.094508.
[22] Bose, S., Galande, C., Chockalingam, S.P., Banerjee, R., Raychaudhuri, P. and Ayyub, P., 2009. Competing effects of surface phonon softening and quantum size effects on thesuperconducting properties of nanostructured Pb. Journal of Physics: Condensed Matter, 21(20), p.205702.
[23] Jin, Y., Song, X. and Zhang, D., 2009. Grain-size dependence of superconductivity in dc sputtered Nb films. Science in China Series G: Physics, Mechanics and Astronomy, 52(9), pp.1289-1292.
[24] Delacour, C., Ortega, L., Faucher, M., Crozes, T., Fournier, T., Pannetier, B. and Bouchiat, V., 2011. Persistence of superconductivity in niobium ultrathin films grown on R-plane sapphire. Physical Review B—Condensed Matter and Materials Physics, 83(14), p.144504.
[25] Reich, S., Leitus, G., Popovitz-Biro, R. and Schechter, M., 2003. Magnetization of small lead particles. Physical review letters, 91(14), p.147001.
[26] Kresin, V.Z. and Tavger, B.A., 1966. Superconducting transition temperature of a thin film. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (USSR) For English translation see Sov. Phys.-JETP (Engl. Transl.), 50.
[27] Brihuega, I., García-García, A.M., Ribeiro, P., Ugeda, M.M., Michaelis, C.H., Bose, S. and Kern, K., 2011. Experimental observation of thermal fluctuations in single superconducting Pb nanoparticles through tunneling measurements. Physical Review B—Condensed Matter and Materials Physics, 84(10), p.104525.
[28] Liu, J., Wu, X., Ming, F., Zhang, X., Wang, K., Wang, B. and Xiao, X., 2011. Size-dependent superconducting state of individual nanosized Pb islands grown on Si (111) by tunneling spectroscopy. Journal of Physics: Condensed Matter, 23(26), p.265007.
[29] Romero-Bermúdez, A. and Garcia-Garcia, A.M., 2014. Size effects in superconducting thin films coupled to a substrate. Physical Review B, 89(6), p.064508.
[30] Gordon, J.E., Tan, M.L., Fisher, R.A. and Phillips, N.E., 1989. Specific heat data of high-Tc superconductors: Lattice and electronic contributions. Solid state communications, 69(6), pp.625-629.
[31] Chou, C., White, D. and Johnston, H.L., 1958. Heat capacity in the normal and superconducting states and critical field of niobium. Physical Review, 109(3), p.788.
[32] Wen, H.H., 2020. Specific heat in superconductors. Chinese Physics B, 29(1), p.017401.
[33] Jiang, C., Zaccone, A., Setty, C. and Baggioli, M., 2023. Glassy heat capacity from overdamped phasons and hypothetical phason-induced superconductivity in incommensurate structures. Physical Review B, 108(5), p.054203.
[34] García-García, A.M., Urbina, J.D., Yuzbashyan, E.A., Richter, K. and Altshuler, B.L., 2011. BCS superconductivity in metallic nanograins: Finite-size corrections, low-energy excitations, and robustness of shell effects. Physical Review B—Condensed Matter and Materials Physics, 83(1), p.014510.
[35] De Gennes, P.G., 2018. Superconductivity of metals and alloys. CRC press.
[36] Ketterson, J.B. and Song, S.N., 1999. Superconductivity. Cambridge university press.