Investigating the Nonlinear Optical Behavior of La1-xCaxCo0.5Mg0.5O3 Perovskites

Document Type : Original Article

Authors

School of Physics, Damghan University (DU), Damghan, Iran

Abstract

In this study, we synthesized a series of La...Ca.Co0.5Mg0.5O. perovskites with varying Ca content (x = 0.00, 0.15, 0.45, 0.75) using the citrate method, aiming to explore the relationship between magnesium doping and the nonlinear optical (NLO) behavior of the materials. Structural and optical characterizations were carried out, with a focus on the impact of Mg substitution on the diffraction ring patterns observed during NLO measurements. Our results reveal that increasing Mg content leads to significant changes in the nonlinear optical response, with a notable enhancement in NLO properties as Mg concentration rises. This suggests that the modification of the perovskite structure through Mg doping plays a crucial role in tuning its optical properties. Convection and conduction flow are also discussed in this article. It is shown that the nanofluid becomes dominated by one flow over the other after some time. The findings demonstrate the potential of La...Ca.Co0.5Mg0.5O. perovskites as promising materials for applications in nonlinear optics and photonic devices, where compositional control can be used to optimize performance.

Keywords

Main Subjects


[1] Gholizadeh, A. and Hosseini, S., 2024. Effect of heavy rare]earth substitution on physical properties of BiFeO3 thin films and their photocatalytic application. Journal of the American Ceramic Society, 107(6), pp.4209-4222.
[2] Panconi, L., Euchner, J., Tashev, S.A., Makarova, M., Herten, D.P., Owen, D.M. and Nieves, D.J., 2024. Mapping membrane biophysical nano-environments. Nature Communications, 15(1), p.9641.
[3] Lee, H., Kim, S., Eom, S., Ji, G., Choi, S.H., Joo, H., Bae, J., Kim, K.K., Kravtsov, V., Park, H.R. and Park, K.D., 2024. Quantum tunneling high-speed nano-excitonic modulator. Nature Communications, 15(1), p.8725.
[4] Zanetta, A., Larini, V., Vikram, Toniolo, F., Vishal, B., Elmestekawy, K.A., Du, J., Scardina, A., Faini, F., Pica, G. and Pirota, V., 2024. Vertically oriented low-dimensional perovskites for high-efficiency wide band gap perovskite solar cells. Nature communications, 15(1), p.9069.
[5] Nowok, A., Sobczak, S., Roszak, K., Szeremeta, A.Z., M.czka, M., Katrusiak, A., Pawlus, S., Formalik, F., Barros dos Santos, A.J., Paraguassu, W. and Sieradzki, A., 2024. Temperature and volumetric effects on structural and dielectric properties of hybrid perovskites. Nature communications, 15(1), p.7571.
[6] Gholizadeh, A., 2017. La1. xC axCo1. yM gyO3 nano]perovskites as CO oxidation catalysts: Structural and catalytic properties. Journal of the American Ceramic Society, 100(3), pp.859-866.
[7] Yildirim, M., Dinc, N.U., Oguz, I., Psaltis, D. and Moser, C., 2024. Nonlinear processing with linear optics. Nature Photonics, 18(10), pp.1076-1082.
[8] Sekikawa, T., Kosuge, A., Kanai, T. and Watanabe, S., 2004. Nonlinear optics in the extreme ultraviolet. Nature, 432(7017), pp.605-608.
[9] Alizadeh, A., Rajabi, Y. and Bagheri.Mohagheghi, M.M., 2022. Effect of crystallinity on the nonlinear optical properties of indium.tin oxide thin films. Optical Materials, 131, p.112589.
[10] Guan, Z., Fu, L., Wei, Z., Shan, N., Li, H., Fang, Y., Zhao, Y., Huang, Z., Humphrey, M.G. and Zhang, C., 2023. Toward strong nonlinear optical absorption properties of perovskite films via porphyrin axial passivation. Materials Today Physics, 35, p.101135.
[11] Shen, W., Chen, J., Wu, J., Li, X. and Zeng, H., 2020. Nonlinear optics in lead halide perovskites: mechanisms and applications. Acs Photonics, 8(1), pp.113-124.
[12] Wei, Q., Wang, C. and Li, M., 2023. Halide perovskite micro and nano lasers. In Metal Halide Perovskites for Generation, Manipulation and Detection of Light (pp. 219-255). Elsevier.
[13] Zhang, Q., Shang, Q., Su, R., Do, T.T.H. and Xiong, Q., 2021. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Letters, 21(5), pp.1903-1914.
[14] Rashid, A. and Ikram, M., 2024. Optical characterization of La2SrFe2TiO9 triple perovskite: Insights for advanced optoelectronic and solar cell applications. Optik, 308, p.171843.
[15] Liu, X., Wang, Y., Wang, Y., Zhao, Y., Yu, J., Shan, X., Tong, Y., Lian, X., Wan, X., Wang, L. and Tian, P., 2022. Recent advances in perovskites-based optoelectronics. Nanotechnology Reviews, 11(1), pp.3063-3094.
[16] Zhou, Y., Huang, Y., Xu, X., Fan, Z., Khurgin, J.B. and Xiong, Q., 2020. Nonlinear optical properties of halide perovskites and their applications. Applied Physics Reviews, 7(4).
[17] Sheik-Bahae, M., Said, A.A. and Van Stryland, E.W., 1989. High-sensitivity, single-beam n 2 measurements. Optics letters, 14(17), pp.955-957.
[18] Gheymasi, A.N., Rajabi, Y. and Zare, E.N., 2020. Nonlinear optical properties of poly (aniline-co-pyrrole) @ ZnO-based nanofluid. Optical Materials, 102, p.109835.
[19] R. Boyd, Nonlinear Optics, 3rd Edition, ISBN: 9780080485966, Academic Press, 1-640, 2008.
[20] Karimzadeh, R., 2013. Studies of spatial self-phase modulation of the laser beam passing through the liquids. Optics communications, 286, pp.329-333.