Ni-Doped Cu10%/YIG Nanoparticle-Based Metamaterials: Synthesis and Electromagnetic Property Investigation at Terahertz Frequencies

Document Type : Original Article

Authors

1 University of Mazandaran

2 Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran

Abstract

In this study, we examine the negative electromagnetic properties and refractive index in yttrium iron garnet (YIG) -based nanocomposites, specifically Cu10%/YIG and nickel-doped Cu10%/YIG, synthesized via an in-situ method. Field Emission Scanning Electron Microscopy (FESEM) analysis confirmed the successful formation of the target nanostructures. Particle size distribution analysis indicated an approximately normal and uniform distribution across the YIG nanoparticles. UV spectroscopy verified that the electronic structure and optical properties of the samples matched predicted characteristics Measurements of dielectric permittivity and magnetic permeability were conducted at room temperature using scattering parameters from a Vector Network Analyzer (VNA) and processed through MATLAB software. The results showed simultaneous negativity in both ε and μ within certain frequency ranges, confirming the potential for a negative refractive index.This feature opens promising opportunities for advanced electromagnetic wave control, with implications for optical, communication, and electronic technologies.

Keywords

Main Subjects


  1. Veselago, V.G., 1967. The electrodynamics of substances with simultaneously negative values of and.  fiz. nauk92(3), pp.517-526.
  2. Takagi, T., 1990. A concept of intelligent materials. Journal of Intelligent Material Systems and Structures1(2), pp.149-156.
  3. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C. and Schultz, S., 2000. Composite medium with simultaneously negative permeability and permittivity. Physical review letters84(18), p.4184.
  4. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C. and Schultz, S., 2000. Composite medium with simultaneously negative permeability and permittivity. Physical review letters84(18), p.4184.
  5. Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D. and Taylor, A.J., 2009. A metamaterial solid-state terahertz phase modulator. Nature photonics3(3), pp.148-151.
  6. Veselago, V.G., 2003. Electrodynamics of materials with negative index of refraction. In Electromagnetic Materials(pp. 115-122).
  7. Fang, N. and Zhang, X., 2002, August. Imaging properties of a metamaterial superlens. In Proceedings of the 2nd IEEE Conference on Nanotechnology(pp. 225-228). IEEE.
  8. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F. and Smith, D.R., 2006. Metamaterial electromagnetic cloak at microwave frequencies. Science314(5801), pp.977-980.
  9. Wood, B., Pendry, J.B. and Tsai, D.P., 2006. Directed subwavelength imaging using a layered metal-dielectric system. Physical Review B—Condensed Matter and Materials Physics74(11), p.115116.
  10. Xie, P., Shi, Z., Feng, M., Sun, K., Liu, Y., Yan, K., Liu, C., Moussa, T.A.,
    Huang, M., Meng, S. and Liang, G., 2022. Recent advances inradio-frequency negative dielectric metamaterials by designing heterogeneous composites. Advanced Composites and Hybrid Materials5(2), pp.679-695.
  11. Shalaev, V.M., 2007. Optical negative-index metamaterials. Nature photonics1(1), pp.41-48.
  12. Wang, N., Tong, J., Zhou, W., Jiang, W., Li, J., Dong, X. and Hu, S., 2015. Novel quadruple-band microwave metamaterial absorber. IEEE Photonics Journal7(1), pp.1-6.
  13. Wang, N., Tong, J., Zhou, W., Jiang, W., Li, J., Dong, X. and Hu, S., 2015. Novel quadruple-band microwave metamaterial absorber. IEEE Photonics Journal7(1), pp.1-6.
  14. Engheta, N., 2003, June. Metamaterials with negative permittivity and permeability: background, salient features, and new trends. In IEEE MTT-S International Microwave Symposium Digest, 2003(Vol. 1, pp. 187-190). IEEE.
  15. Soukoulis, C.M., Kafesaki, M. and Economou, E.N., 2006. Negative‐Index Materials: New Frontiers in Optics. Advanced materials18(15), pp.1941-1952.
  16. Reed, E.J., Soljačić, M. and Joannopoulos, J.D., 2003. Reversed Doppler effect in photonic crystals. Physical review letters91(13), p.133901.
  17. Pocklington, H.C., 1905. Growth of a Wave-group when the Group-velocity is Negative. Nature71(1852).
  18. Rao, R., 2015. Microwave Engineering; PHI Learning Pvt. : Delhi, India.
  19. Xu, W., Xie, L. and Ying, Y., 2017. Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale9(37), pp.13864-13878.
  20. Mallmann, E.J.J., Sombra, A.S.B., Goes, J.C. and Fechine, P.B.A., 2013. Yttrium iron garnet: properties and applications review. Solid State Phenomena202, pp.65-96.
  21. Chlan, V., Štěpánková, H., Englich, J., Řezníček, R., Kouřil, K., Kučera, M. and Nitsch, K., 2010. Antisite Defects in Epitaxial Films of Lutetium Doped Yttrium Iron Garnets Studied by Nuclear Magnetic Resonance. Acta Physica Polonica A118(5), pp.846-847.
  22. Khan, M.I., Waqas, M., Naeem, M.A., Hasan, M.S., Iqbal, M., Mahmood, A., Ramay, S.M., Al-Masry, W., Abubshait, S.A., Abubshait, H.A. and Mahmood, Q., 2020. Magnetic behavior of Ga doped yttrium iron garnet ferrite thin films deposited by sol-gel technique. Ceramics International46(17), pp.27318-27325.
  23. Pozar, D.M., 2021. Microwave engineering: theory and techniques. John wiley & sons.
  24. Griffiths, D.J. and Colleger, R., 1999. Introduction to Electrodynamics Prentice Hall Upper Saddle River. New Jersey7458.
Volume 5, Issue 1
In progress
November 2025
Pages 31-38
  • Receive Date: 11 November 2024
  • Revise Date: 12 December 2024
  • Accept Date: 12 December 2024