[1] Salunkhe, R.R., Kaneti, Y.V. and Yamauchi, Y., 2017. Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS nano, 11(6), pp.5293-5308.
[2] Denizalti, S., Ali, A.K., Ela, Ç., Ekmekci, M. and Erten-Ela, S., 2018. Dye-sensitized solar cells using ionic liquids as redox mediator. Chemical Physics Letters, 691, pp.373-378.
[3] Yang, M., Dong, B., Yang, X., Xiang, W., Ye, Z., Wang, E., Wan, L., Zhao, L., Wang, S., 2017. TiO2 nanoparticle/nanofiber-ZnO photoanode for the enhancement of the efficiency of dye-sensitized solar cells. RSC Advances, 7, p.41738-41744.
[4] Arof, A.K., Noor, I.M., Buraidah, M.H., Bandara, T.M.W.J., Careem, M.A., Albinsson, I. and Mellander, B.E., 2017. Polyacrylonitrile gel polymer electrolyte based dye sensitized solar cells for a prototype solar panel. Electrochimica Acta, 251, pp.223-234.
[5] Liu, R., Qiang, L.S., Yang, W.D. and Liu, H.Y., 2013. Enhanced conversion efficiency of dye-sensitized solar cells using Sm2O3–modified TiO2 nanotubes. Journal of power sources, 223, pp.254-258.
[6] Jung, H.G., Kang, Y.S. and Sun, Y.K., 2010. Anatase TiO2 spheres with high surface area and mesoporous structure via a hydrothermal process for dye-sensitized solar cells. Electrochimica Acta, 55(15), pp.4637-4641.
[7] Yang, J., Mei, S. and Ferreira, J.M.F., 2001. Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Materials Science and Engineering: C, 15(1-2), pp.183-185.
[8] Gandhiraman, R.P., Jayan, V., Han, J.W., Chen, B., Koehne, J.E. and Meyyappan, M., 2014. Plasma jet printing of electronic materials on flexible and nonconformal objects. ACS applied materials & interfaces, 6(23), pp.20860-20867.
[9] Gandhiraman, R.P., Singh, E., Diaz-Cartagena, D.C., Nordlund, D., Koehne, J. and Meyyappan, M., 2016. Plasma jet printing for flexible substrates. Applied Physics Letters, 108(12).
[10] Tsumaki, M., Nitta, K., Jeon, S., Terashima, K. and Ito, T., 2018. Development of plasma-assisted inkjet printing and demonstration for direct printing of conductive silver line. Journal of Physics D: Applied Physics, 51(30), p.30LT01.
[11] Dey, A., Lopez, A., Filipič, G., Jayan, A., Nordlund, D., Koehne, J., Krishnamurthy, S., Gandhiraman, R.P. and Meyyappan, M., 2019. Plasma jet based in situ reduction of copper oxide in direct write printing. Journal of Vacuum Science & Technology B, 37(3).
[12] Dey, A., Krishnamurthy, S., Bowen, J., Nordlund, D., Meyyappan, M., 2018. Plasma Jet Printing and in Situ Reduction of Highly Acidic Graphene Oxide. ACS nano, 12, p.5473-81.
[13] Ramamurti, R., Gandhiraman, R.P., Lopez, A., Doshi, P., Nordlund, D., Kim, B. and Meyyappan, M., 2020. Atmospheric pressure plasma printing of nanomaterials for IoT applications. IEEE Open Journal of Nanotechnology, 1, pp.47-56.
[14] Bregadiolli, B.A., Fernandes, S.L. and Graeff, C.F.D.O., 2017. Easy and fast preparation of TiO2-based nanostructures using microwave assisted hydrothermal synthesis. Materials Research, 20(4), pp.912-919.
[15] Lou, B.S., Lai, C.H., Chu, T.P., Hsieh, J.H., Chen, C.M., Su, Y.M., Hou, C.W., Chou, P.Y. and Lee, J.W., 2019. Parameters affecting the antimicrobial properties of cold atmospheric plasma jet. Journal of Clinical Medicine, 8(11), p.1930.
[16] Liu, B.T. and Liou, J.Y., 2018. High efficiency of dye-sensitized solar cells with two-layer mesoporous photoanodes fabricated in a low temperature process. Electrochimica Acta, 261, pp.421-427.
[17] Xu, L., Xu, J., Hu, H., Cui, C., Ding, Z., Yan, Y., Lin, P. and
Wang, P., 2019. Hierarchical submicroflowers assembled from ultrathin anatase TiO2 nanosheets as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells. Journal of Alloys and Compounds, 776, pp.1002-1008.
[18] Zhang, L., Cole, J.M., 2015. Anchoring Groups for DyeSensitized Solar Cells. ACS Applied Materials and Interfaces, 7, p.3427-3455.
[19] Mozaffari, S. and Nateghi, M.R., 2014. Effects of multi anchoring groups of catecholamine polymer dyes on the electrical characteristics of metal free dye-sensitized solar cells: A comparison study. Solar energy, 106, pp.63-71.
[20] Mozaffari, S., Dehghan, M., Borhanizarandi, M. and Nateghi, M.R., 2014. Effect of single-wall carbon nanotubes on the properties of polymeric gel electrolyte dye-sensitized solar cells. Journal of Solid State Electrochemistry, 18, pp.655-663.
[21] Lim, S.J., Kang, Y.S. and Kim, D.W., 2011. Dye-sensitized solar cells with quasi-solid-state cross-linked polymer electrolytes containing aluminum oxide. Electrochimica Acta, 56(5), pp.2031-2035.