Influence of bismuth substitution on structural and optical properties of CuFe2-xBixO4 spinel structure

Document Type : Original Article

Authors

School of Physics, Damghan University, Damghan, Iran

Abstract

CuFe2-xBixO4 (x=0.0-2.0) spinel structures were synthesized using a sol-gel auto-combustion method. The effects of Bi3+ substitution on structural and optical properties were investigated using X-ray diffraction, Fourier-transformed infrared spectroscopy, and UV-vis spectroscopy. A phase transition was observed in CuFe2-xBixO4 with increasing Bi content, leading to enhanced lattice parameters a and c due to Bi3+ larger ionic radius. Crystallite size decreased as Bi substitution increased, attributed to the reduced mobility and higher mass of Bi3+ ions. The tunability of structural and optical properties was achieved through controlled Bi substitution, with optical band gap energy increasing due to local distortions from Bi3+ ions in the CuFe2O4 lattice. CuFe2-xBixO4spinel structures show promise for applications in photocatalysis, gas sensors, pigments, and magnetic materials. We will clearly outline the existing knowledge in the field of Bi3+-substituted copper ferrite nanoparticles, focusing on the need for a comprehensive understanding of the structural and optical property changes resulting from Bi3+ substitution.

Keywords

Main Subjects


[1] Laokul, P., Amornkitbamrung, V., Seraphin, S., and Maensiri, S., 2010. Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Current Applied Physics, 11(1), pp.101-108.
[2] Harris, V.G., Koon, N.C., Williams, C.M., Zhang, Q., Abe, M. and Kirkland, J.P., 1996. Cation distribution in NiZn‐ferrite films via extended x‐ray absorption fine structure. Applied physics letters68(15), pp.2082-2084.
[3] Satheeshkumar, M.K., Kumar, E.R., Srinivas, Ch., Prasad, G., Meena, S.S., Pradeep, I., Suriyanarayanan, N., and Sastry, D.L., 2014. Structural and magnetic properties of CuFe2O4 as-prepared and thermally treated spinel nanoferrites. Indian Journal of Pure & Applied Physics, 52, pp.124-130.
[4] Kalai Selvan, R., Augustin, C.O., Berchmans, L.J., and Saraswathi, R., 2003. Combustion synthesis of CuFe2O4. Materials Research Bulletin, 38, pp.41-54.
[5] Bahadur, D., 1992. Current trends in applications of magnetic ceramic materials. Bulletin of Materials Science, 15, pp.431-439."
[6] Sugimoto, M., 1999. The Past, Present, and Future of Ferrites. American Ceramic Society, 82(2), pp.269-280.
[7] Šafařík, I., and Šafaříková, 1992. Magnetic Nanoparticles and Biosciences. Nanostructured Materials, pp.1-23.
[8] Sartale, S.D., and Lokhande, C.D., 2001. Electrochemical deposition and oxidation of CuFe2 alloy: a new method to deposit CuFe2O4 thin films at room temperature. Materials Chemistry and Physics, 70(3), pp.274-284.
[9] Mazen, S., 2000. Tetravalent ions substitution in Cu – ferrite; structure formation and electrical properties. Materials Chemistry and Physics, 62(2), pp.131-138.
[10] Mahajan, R.P., Patankar, K.K., Kothale, M.B., and Patil, S.A., 2000. Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites. Bulletin of Materials Science, 23, pp.273-279.
[11] Pati, A.N., Mahajan, R.P., Patankar, K.K., Ghatage, A.K., Mathe, V.L., and Patil, S.A., 2000. Conduction mechanism in CuxFe3-xO4. Indian Journal of Pure & Applied Physics, pp.651-656.
[12] Ahmad, E.M., 2014. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of rhodamine B using ZnO/CNTs composites photocatalysts. Ultrasonics Sonochemistry, 21, pp.761-773.
[13] Ahmad, M.M., 2002. Enhanced magnetization in sputter-deposited copper ferrite thin films. Materials Science, 246, pp.266-269.
[14] Harris, V.G., Koon, N.C., Williams, C.M., Zhang, Q., Abe, M. and Kirkland, J.P., 1996. Cation distribution in NiZn‐ferrite films via extended x‐ray absorption fine structure. Applied physics letters68(15), pp.2082-2084.
[15] Rana, M.U., Islam, M., and Abbas, T., 2000. Cation distribution and magnetic interactions in Zn-substituted CuFe2O4 ferrites. Materials Chemistry and Physics, 65(3), pp.345-349.
[16] Ajmal, M., and Maqsood, A., 2008. Structural, electrical and magnetic properties of Cu1−xZnxFe2O4 ferrites (0 ≤ x ≤ 1). Journal of Alloys and Compounds, 460(1-2), pp.54-59.
[17] Adineh, Z., and Gholizadeh, A., 2021. Hydrothermal synthesis of Ce/Zr co-substituted BiFeO3: R3c-to-P4mm phase transition and enhanced room temperature ferromagnetism. Journal of Materials Science: Materials in Electronics, 32, pp.26929-26943."
[18] Adineh, Z., and Gholizadeh, A., 2024. Comparison of sol-gel and hydrothermal synthesis methods on the physical, and photocatalytic properties of Bi1−xCexFe1−xAlxO3 ferrites. Journal of Materials Science: Materials in Electronics, 35, pp.745.
[19] Choupani, M., and Gholizadeh, A., 2021. The effect of calcination temperature on the X-ray peak broadening of t-CuFe2O4. Progress in Physics of Applied Materials, 1, pp.19.
[20] Gholizadeh, A., and Tajabor, N., 2010. Influence of N2- and Ar-ambient annealing on the physical properties of SnO2
transparent conducting films. Materials Science in Semiconductor Processing, 13, pp.162–166.
[21] Choupani, M., and Gholizadeh, A., 2024. Correlation between structural phase transition and physical properties of Co2+/Gd3+ co-substituted copper ferrite. Journal of Rare Earths, 42, pp.1344-1353.
[22] Mojahed, M., Gholizadeh, A., and Dizaji, H.R., 2024. Influence of Ti4+ substitution on the structural, magnetic, and dielectric properties of Ni-Cu–Zn ferrite. Journal of Materials Science: Materials in Electronics, 35, pp.1239.
195
[23] Harish, V., Ansari, M.M., Tewari, D., Gaur, M., Yadav, A.B., García-Betancourt, M.L., Abdel-Haleem, F.M., Bechelany, M., and Barhoum, A., 2022. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials (Basel), 12(18), pp.3226.
[24] Soleimani, F., Salehi, M., and Gholizadeh, A., 2017. Hydrothermal Synthesis, Structural and Catalytic Studies of CuBi2O4 Nanoparticles. Journal of Nanoanalysis, 4, pp.239-246.
[25] Gao, H., Wang, F., Wang, S., Wang, X., Yi, Z., and Yang, H., 2019. Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Materials Research Bulletin, 115, pp.140-149.
[26] Soleimani, F., Salehi, M., and Gholizadeh, A., 2019. Comparison of visible light photocatalytic degradation of different pollutants by (Zn, Mg)xCu1-xBi2O4 nanoparticles. Ceramics International, 45, pp.8926–8939.
 [27] Guo, F., Li, M., Ren, H., Huang, X., Hou, W., Wang, C., and Lu, C., 2019. Fabrication of pn CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation. Applied Surface Science, 491, pp.88-94.
[28] Esmaili, L. and Gholizadeh, A., 2020. The effect of Nd and Zr co-substitution on structural, magnetic and photocatalytic properties of Bi1-xNdxFe1-xZrxO3 nanoparticles. Materials Science in Semiconductor Processing118, p.105179.
[29] Beyranvand, M., Zahedi, A., and Gholizadeh, A., 2022. Cadmium substitution effect on microstructure and magnetic properties of Mg-Cu-Zn ferrites. Frontiers in Materials, 8, pp.779837.