Structural, electronic and magnetic properties of Fe2TiP full-Heusler compound: A first-principles study

Document Type : Original Article

Author

Department of Physics, Faculty of Sciences, University of Birjand, Birjand, Iran

Abstract

This study examined the electronic, magnetic, and structural properties of Fe2TiP full-Heusler compound, using the pseudo-potential plane wave (PP-PW) formalism based on density functional theory (DFT). Energetically, the AlCu2Mn-type structure of Fe2TiP had greater stability in comparison with the CuHg2Ti-type structure and show the half-metallic (HF) ferrimagnetic behavior. Based on the results at the lattice constant of 5.65 Å, the total magnetic moment (Mtot) was 1 μB/unit cell; this finding is consistent with the Slater-Pauling (SP) rule. The minority spin band exhibited a semiconductor behavior (spin-flip gap of 0.21 eV; gap of 0.35 eV), whereas the majority spin band was metallic. The origin of half-metallicity and appearance of the minority band gap were discussed using the band structure calculations and density of states (DOS). In addition, dependence of magnetic properties on the lattice constant was evaluated. In the lattice constant range of 5.55-5.85 Å, the Fe2TiP compound can retain the half-metallicity. Therefore, the half-metallic feature was not influenced by the lattice distortion, and this material seems to have potential applications in future spintronics devices.

Keywords

Main Subjects


[1] Dho, J., Ki S., Gubkin, A.F., Park, J.M.S., Sherstobitov, E.A., 2010. A neutron diffraction study of half-metallic ferromagnet CrO2 nanorods. Solid State Commun. 150, pp. 86-90.
[2] Zhu, Z.H., Yan, X.H., 2009. Half-metallic properties of perovskite BaCrO3BaCrO3 and BaCr0.5Ti0.5O3BaCr0.5Ti0.5O3 superlattice: LSDA+U calculations. J. Appl. Phys. 106, pp. 023713.
[3] Kronik, L., Jain, M., Chelikowsky, J.R.: Electronic structure and spin polarization of
MnxGa1-xN. Phys. Rev. B. 66, 041203 (2002).
[4] Kobayashi, K.L., Kimura, T., Sawada, H., Terakura, K., Tokura, Y., 1998. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, pp. 677-680.
[5]   de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J., 1983. New Class of Materials: Half-Metallic Ferromagnets. Phys. Rev. Lett. 50, pp. 2024-2027.
[6] Kervan, N., 2012. Half-metallicity in the full-Heusler Co2ScP compound: A density functional study. J. Magnet. Magnet. Mater. 324, pp. 4114-4117.
[7] Kandpal, H.C., Fecher, GH, Felser, C., 2007 Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D: Appl. Phys. 40, pp. 1507.
[8] Wei, X.P., Zhang, Y.L., Sun, X.W., Song, T., Guo, P., 2016. The electronic and magnetic properties of defects on half-metallic Ti2NiIn alloy. J. Solid State Chem. 233, pp. 221-228.
[9] Qi, S., Shen, J., Zhang, C.H., 2015. First-principles study on the structural, electronic and magnetic properties of the Ti2VZ (Z = Si, Ge, Sn) full-Heusler compounds. Mater. Chem. Phys. 164, pp.177-182.
[10] Wei, X.P., Deng, J.B., Mao, G.Y., Chu, S.B., Hu, X.R., 2012. Half-metallic properties for the Ti2YZ (Y= Fe, Co, Ni, Z= Al, Ga, In) Heusler alloys: A first-principles study. Intermetallics 29, pp. 86-91.
[11] Anjami, A., Boochani, A., Elahi, S.M., Akbari, H., 2017. Ab-initio study of mechanical, half-metallic and optical properties of Mn2ZrX (X = Ge, Si) compounds. Results Phys. 7, pp. 3522-3529.
[12] Kervan, N., Kervan, S., Canko, O., Atiş, M., Taşkin, F., 2016. Half-metallic Ferrimagnetism in the Mn2NbAl full Heusler compound: A first-Principles study. J. Supercond. Novel Magn. 29, pp. 187-192.
[13] Li, S.T., Ren, Z., Zhang, X.H., Cao, C.M., 2009. Electronic structure and magnetism of Mn2CuAl: A first principles study. Phys. B: Condens. Matter. 404, pp. 1965-1968.
[14] Rai, D.P., Shankar, A., Sandeep Ghimire, M.P., Thapa, R.K., 2013. Electronic and magnetic properties of a full-Heusler alloy Co2CrGe: a first-principles study. J. Theo. App. Phys. 7, pp. 3.
[15] Zareii, S.M., Arabi, H., Sarhaddi, R., 2012. Effect of Si substitution on electronic structure and magnetic properties of Heusler compounds Co2TiAl1-xSix. Phys. B: Condens. Matter. 407, pp. 3339-3346.
[16] Gökoglu, G., 2010. First principles electronic structure calculations of Co2CrBi Heusler system. Phys. B: Condens. Matter. 405, pp. 2162-2165.
[17] Dahmane, F., Mogulkoc, Y., Doumi, B., Tadjer, A., Khenata, R., Bin Omran, S., Rai, D.P., Murtaza, G., Varshney, D., 2016. Structural, electronic and magnetic properties of Fe2-based full Heusler alloys: A first principle study. J. Magnet. Magnet. Mater. 407, pp. 167-174.
[18] Chen, B.S., Li, Y.Z., Guan, X.Y., Wang, C., Wang, C.X., Gao, Z.Y., 2015. First-principles study of half-metallic and magnetic properties for the Heusler alloys Fe2CrX (X= P, As, Sb, Bi). J. Supercond. Novel Magn. 28, pp. 1559-1564.
[19] Luo, H.Z., Zhu, Z.Y., Ma, L., Xu, S.F., Liu, H.Y., Qu, J.P., Li, Y.X., Wu, G.H., 2007. Electronic structure and magnetic properties of Fe2YSi (Y= Cr, Mn, Fe, Co, Ni) Heusler alloys: a theoretical and experimental study. J. Phys. D: Appl. Phys. 40, pp. 7121.
[20] Canko, O., Taskin, F., Atis, M., Kervan, N., Kervan, S., 2016. Magnetism and half-metallicity in the Fe2ZrP Heusler alloy. J. Supercond. Novel Magn. 29, pp. 2573-2578.
[21] Kervan, N., Kervan, S., 2013. Half-metallic properties in the Fe2TiP full-Heusler compound. Intermetallics 37, pp. 88-91.
[22] Giannozzi, P. et al., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 21, pp. 395502.
[23] Giannozzi, P. et al., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter., 29, pp. 465901.
[24] Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C., 1992. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, pp. 6671.
[25] Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, pp. 7892.
[26] Monkhorst, H.J., Pack, J.D., 1976. Special points for Brillouin-zone integrations. Phys. Rev. B 13, pp. 5188.
[27] Murnaghan, F.D., 1944. The Compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, pp. 244.
[28] Guo, S., Liu, C.T., 2011. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Progr. Nat. Sci.: Mater. Int. 21, pp. 433-446.
[29] McNaught, A.D., Wilkinson, A., Compendium of Chemical Terminology. Blackwell Science, Oxford, 1997.
[30] Sarhaddi, R., Arabi, H., Pourarian, F., 2014. Structural, stability and electronic properties of C15-AB2 (A= Ti, Zr; B = Cr) intermetallic compounds and their hydrides: An ab initio study. Int. J. Mod. Phys. B. 28, pp. 1450105.
[31] Ahmadian, F., 2014. Half-metallicity in a new Heusler alloy Ti2FeSn: A density functional study. J. Korean Phys. Soc. 64, pp. 277-282.
[32] Kandpal, H.C., Felser, C., Seshadri, R., 2006. Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D: Appl. Phys. 39, pp. 776-785.
[33] Galanakis, I., Dederichs, P.H., Papanikolaou, N., 2002. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, pp. 174429.
[34] Feng, L., Liu, E.K., Zhang, W.X., Wang, W.H., Wu, G.H., 2014. First-principles investigation of half-metallic ferromagnetism of half-Heusler compounds XYZ. J. Magnet. Magnet. Mater. 351, pp. 92-97.
[35] Block, T., Carey, M.J., Gurney, B.A., Jepsen, O., 2004. Band-structure calculations of the half-metallic ferromagnetism and structural stability of full- and half-Heusler phases. Phys. Rev. B 70, pp. 205114.
[36] Sadeghi, K.H., Ahmadian, F., 2004. Half-metallic ferromagnetism in Ti2IrZ (Z = B, Al, Ga, and In) Heusler alloys: A density functional study. Pramana-J. Phys. 90, pp. 1-11.