Investigating the Performance of TIN-Based Perovskite Solar Cell with Zinc Selenide as an ETM and Graphene as an HTM Using SCAPS-1D

Document Type : Original Article

Authors

1 Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria.

2 Directorate of information and communication Technology, NDA, Kaduna, Nigeria.

3 Department of Physics, Federal University lafia, Nasarawa State. Nigeria.

Abstract

In this study, a numerical analysis was conducted on a Sn-based planner heterojunction perovskite device. Structure of Glass/TCO/ETL/CH3NH3SnI3/HTL/Metal was performed by using the solar cell device simulator SCAPS 1D. The absorber layer is a tin-based methylammonium tin iodide (CH3NH3SnI3), while the electron transport layer (ETL), ZnSe, and a hole transport layer (HTL) Graphene, were used. To optimize the device, the thickness of the ETL, absorber, and HTL doping concentrations were varied, and their impact on device performance was evaluated. The effect of temperature variations was also investigated. The optimum absorber layer thickness was found at 950 nm for the proposed structure.  The acceptor concentration improved the device performance significantly. The optimized solar cell achieved a PCE, Voc, Jsc, and FF of 25.40%, 0.959 V, 32.863 mA/cm2, and 80.60%, respectively. The proposed cell structure also possesses excellent performance under high operating temperatures indicating great promise for eco-friendly, low-cost solar energy harvesting.

Keywords

Main Subjects


© 2024 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1]     Green, M. A., 2022. Recent advances in photovoltaics. Review of Progress in Applied Physics, 93(10).
[2]   Luque, A. and Hegedus, S., 2003. Photovoltaic Science and Engineering.
[3] King, R. R., Diamond, D.J., Panek, M. W. and Werthen, M. W., 2008. Recent performance advances in silicon concentrator solar cells. Progress in Photovoltaics: Research and Applications, 16(3), pp.217-226.
[4]   Singh, P. and Clement, F. 2020. A review of multicrystalline silicon wafer based solar cell technologies. Materials Research Express, 7(8), pp.085304. 
[5]    Chopra, K.L., Paulson, P.D. and Dutta, V., 2004. Thin‐film solar cells: an overview. Progress in Photovoltaics: Research and applications12(2‐3), pp.69-92.
[6] Rolland, A., Chabal, Y. J., Lewis, S. W. and Miedaner, S. 2006. High-efficiency, large-area amorphous silicon solar cells with low-temperature, solution-grown silicon oxide passivation. Applied Physics Letters, 89(12), pp.123113. 
[7] Britt, J. F. and Foutz, T. R. 2002. Thin-film CdTe solar cells: From high-temperature processing to molecular beam epitaxy. Journal of Physics D: Applied Physics, 35(22), pp. R33. 
[8] Jackson, P., Wuerfel, D., Larson, D., Eisler, S. and Bocarsly, A. B., 2011. Efficient, all-compound tandem solar cells fabricated with CdS/CdTe and CIGSe submodules. Applied Physics Letters, 99(7), pp.073105. 
[9]   Snaith, H. J., 2017. Perovskite solar cells: The emergence of a new era in low-cost photovoltaics. Journal of Physical Chemistry Letters, 8(5), pp.1100-1106. 
[10] Luo, D., Su, R., Zhang, W., Gong, Q. and Zhu, R., 2020. Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials5(1), pp.44-60.
[11]Grätzel, M., 2001. Photoelectrochemical cells. nature414(6861), pp.338-344.
[12]  Zhou, Y., Yang, M., Pang, W., Zhu, K. and Liu, Y. (2018). Organic-inorganic hybrid perovskite solar cells. Chemical Reviews, 118(22), pp.11240-11292. 
 [13] Ashisa Dubey A., 2016 perovskite solar cells:  promises and challenges.
 [14] Chandler, D., 2020. explained why perovskites could make solar cells to new heights.  Article: MIT news office July 15.
 [15] Huang, H. and Snaith, H. J., 2017. A new era for tin halide perovskite solar cells. Nature Reviews Materials, 2(7), pp. 17042
 [16] Saliba, M., Correa-Baenna, J.P., Wolff, C.M., Stolterfoht M., Phung, M., Albrecht, S., Neher, D. and Abate, A., 2018. How to make over 20% efficient perovskite solar cells in regular (n.i-p) and inverted (p-i-n) Architecture. Chemistry of Materials 30(13), pp.4193-4201.
 [17]  Kopacic, I. Friesenbichler, B., Plank, H., Rath T. and Trimmel, G., 2018 Enhanced performance of Germanium halide perovskite solar cells through compositional Engineering. ACS Applied Energy Materials 1(2), pp.343-347.
 [18] Qian, J., Xu, B. and Tian, W., 2016. A comprehensive theoretical study of halide perovskites ABX3. Organic Electronics37, pp.61-73.
 [19]  Wang, F., Geng, W., Zhou, N., Yan, L., Sun, J., Han, X. and Cheng, H. M., 2020. High‐Performance Tin‐Based Perovskite Solar Cells Enabled by SnF2 Passivation. Advanced Energy Materials, 10(1), pp.902287.
 [20] Saliba, M., Matsui, T., Domanski, K., Seo, J.Y., Ummadisingu, A., Zakeeruddin, S.M. and Grätzel, M., 2016. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354(6309), pp.206-209.
 [21] Shyma, A.P. and Sellappan, R., 2022. Computational probing of tin-based lead-free perovskite solar cells: Effects of absorber parameters and various electron transport layer materials on device performance. Materials (Basel), 15(21), pp.7859.
 [22] Gosling, J.H., Makarovsky, O., Wang, F., Cottam, N.D., Greenaway, M.T., Patanè, A., Wildman, R.D., Tuck, C.J., Turyanska, L. and Fromhold, T.M., 2021. Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Nature Communications, 12(1), pp.2951.
  [23] Rodrigues, I.H., Rorsman, N. and Vorobiev, A., 2022. Mobility and quasi-ballistic charge carrier transport in graphene field-effect transistors. Journal of Applied Physics, 132(24), pp.244303.
  [24] Burgelman, M., Decock, K., Niemegeers, A., Verschraegen, J. and Degrave, S., 2016. SCAPS manual. University of Ghent: Ghent, Belgium.
  [25] Islam, M.A., Alamgir, B., Chowdhury, S.I. and Billah, S.M.B., 2022. Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency. Journal of Ovonic Research18(3).
  [26] Zyoud, S.H., Zyoud, A.H., Abdelkader, A. and Ahmed, N.M., 2021. Numerical simulation for optimization of ZnTe-based thin-film heterojunction solar cells with different metal chalcogenide buffer layers replacements: SCAPS–1D simulation program. Int. Rev. Model. Simul14, pp.79-88.
  [27] Gagandeep, G., Singh, M. and Kumar, R., 2019, July. Simulation of perovskite solar cell with graphene as hole transporting material. In AIP Conference Proceedings (Vol. 2115, No. 1). AIP Publishing.
[28] Drummond, T.J., 1999. Work functions of the transition metals and metal silicides (No. SAND99-0391J). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia National Lab.(SNL-CA), Livermore, CA (United States).
[29]  Amri, K., Belghouthi, R., Aillerie, M. and Gharbi, R., 2022. Guidelines for the Design of High-Performance Perovskite Based Solar Cells. Key Engineering Materials922, pp.95-105.
[30]  Sumbel, I., Raza, E., Ahmad, Z., Zubair, M., Mehmood, M.Q., Mehmood, H., Massoud, Y. and Rehman, M.M., 2023. Numerical simulation to optimize the efficiency of HTM-free perovskite solar cells by ETM engineering.
[31] Smith, J. and Johnson, A., 2020. Influence of Electron Transport Layer Thickness on Perovskite Solar Cell Performance. Journal of Renewable Energy, 15(3), pp.210-225.
[32]  Garcia, L. and Patel, R., 2018. Impact of Electron Transport Layer Thickness on Perovskite Solar Cell Performance. Journal of Applied Physics, 112(5), pp.350-365.
[33] Chen, H. and Wang, Y. 2019. Impact of Absorber Layer Thickness on Perovskite Solar Cell Performance. Solar Energy Materials and Solar Cells, 25(4), pp.570-585.
[34]   Alia, H.T., Jamil, M., Mahmood, K., Yusuf, M., Ikram, S., Ali, A. A., Amin, N., Javaid, K., Ali, M.Y. and Nawaz, M.R., 2021. A simulation study of perovskite based solar cells using CZTS as HTM with different electron transporting materials. Journal of Ovonic Research, 17(5), pp.437-445.
[35]  Trifiletti, V., Degousée, T., Manfredi, N., Fenwick, O., Colella, S. and Rizzo, A., 2019. Molecular doping for hole transporting materials in hybrid perovskite solar cells. Metals10(1), p.14.
[36]   Nikfar, N. and Memarian, N., 2022. Theoretical study on the effect of electron transport layer parameters on the functionality of double-cation perovskite solar cells. Optik258, p.168932.
[37]   Das, A., Mandal, R. and Mandal, D., 2022. Impact of HTM on lead-free perovskite solar cell with high efficiency. Presented at the Materials Science and Engineering Conference.
[38]  Roy, P., Tiwari, S. and Khare, A., 2021. An investigation on the influence of temperature variation on the performance of tin (Sn) based perovskite solar cells using various transport layers and absorber layers. Results in Optics4, p.100083.
[39]   Hao, L., Li, T., Ma, X., Wu, J., Qiao, L., Wu, X., Hou, G., Pei, H., Wang, X. and Zhang, X., 2021. A tin-based perovskite solar cell with an inverted hole-free transport layer to achieve high energy conversion efficiency by SCAPS device simulation. Optical and Quantum Electronics53, pp.1-17.