[1] Goodenough, J.B. and Kim, Y., 2010. Challenges for rechargeable Li batteries. Chemistry of materials, 22(3), pp.587-603.
[2] Schmuch, R., Wagner, R., Hörpel, G., Placke, T. and Winter, M., 2018. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature energy, 3(4), pp.267-278.
[3] Zhang, H., Eshetu, G.G., Judez, X., Li, C., Rodriguez‐Martínez, L.M. and Armand, M., 2018. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angewandte Chemie International Edition, 57(46), pp.15002-15027.
[4] Wang, X., Huang, Y., Ji, D., Omenya, F., Karki, K., Sallis, S., Piper, L.F., Wiaderek, K.M., Chapman, K.W., Chernova, N.A. and Whittingham, M.S., 2017. Structure evolution and thermal stability of high-energy-density Li-ion battery cathode Li2VO2F. Journal of The Electrochemical Society, 164(7), p.A1552.
[5] Mozhzhukhina, N., Kullgren, J., Baur, C., Gustafsson, O., Brant, W.R., Fichtner, M. and Brandell, D., 2020. Short‐range ordering in the Li‐rich disordered rock salt cathode material Li2VO2F revealed by Raman spectroscopy. Journal of Raman Spectroscopy, 51(10), pp.2095-2101.
[6] Nitta, N., Wu, F., Lee, J.T. and Yushin, G., 2015. Li-ion battery materials: present and future. Materials today, 18(5), pp.252-264.
[7] Clément, R.J., Lun, Z. and Ceder, G., 2020. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy & Environmental Science, 13(2), pp.345-373.
[8] Chen, R., Ren, S., Knapp, M., Wang, D., Witter, R., Fichtner, M. and Hahn, H., 2015. Disordered lithium‐rich oxyfluoride as a stable host for enhanced Li+ intercalation storage. Advanced Energy Materials, 5(9), p.1401814.
[9] Cambaz, M.A., Vinayan, B.P., Euchner, H., Johnsen, R.E., Guda, A.A., Mazilkin, A., Rusalev, Y.V., Trigub, A.L., Gross, A. and Fichtner, M., 2018. Design of nickel-based cation-disordered rock-salt oxides: The effect of transition metal (M= V, Ti, Zr) substitution in LiNi0.5M0.5O2 binary systems. ACS applied materials & interfaces, 10(26), pp.21957-21964.
[10] Chen, R., Ren, S., Yavuz, M., Guda, A.A., Shapovalov, V., Witter, R., Fichtner, M. and Hahn, H., 2015. Li+ intercalation in isostructural Li2VO3 and Li2VO2 F with O2− and mixed O2−/F− anions. Physical Chemistry Chemical Physics, 17(26), pp.17288-17295.
[11] Pereira, N., Badway, F., Wartelsky, M., Gunn, S. and Amatucci, G.G., 2009. Iron oxyfluorides as high capacity cathode materials for lithium batteries. Journal of the Electrochemical Society, 156(6), p.A407.
[12] Choi, W. and Manthiram, A., 2006. Superior capacity retention spinel oxyfluoride cathodes for lithium-ion batteries. Electrochemical and solid-state letters, 9(5), p.A245.
[13] Källquist, I., Naylor, A.J., Baur, C., Chable, J., Kullgren, J., Fichtner, M., Edstrom, K., Brandell, D. and Hahlin, M., 2019. Degradation mechanisms in Li2VO2F Li-rich disordered rock-salt cathodes. Chemistry of Materials, 31(16), pp.6084-6096.
[14] Baur, C., Källquist, I., Chable, J., Chang, J.H., Johnsen, R.E., Ruiz-Zepeda, F., Mba, J.M.A., Naylor, A.J., Garcia-Lastra, J.M., Vegge, T. and Klein, F., 2019. Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes. Journal of Materials Chemistry A, 7(37), pp.21244-21253.
[15] Kwon, D.H., Lee, J., Artrith, N., Kim, H., Wu, L., Lun, Z., Tian, Y., Zhu, Y. and Ceder, G., 2020. The impact of surface structure transformations on the performance of Li-excess cation-disordered rocksalt cathodes. Cell Reports Physical Science, 1(9).
[16] Clément, R.J., Kitchaev, D., Lee, J. and Ceder, G., 2018. Short-range order and unusual modes of nickel redox in a fluorine-substituted disordered rocksalt oxide lithium-ion cathode. Chemistry of Materials, 30(19), pp.6945-6956.
[17] Kan, W.H., Deng, B., Xu, Y., Shukla, A.K., Bo, T., Zhang, S., Liu, J., Pianetta, P., Wang, B.T., Liu, Y. and Chen, G., 2018. Understanding the effect of local short-range ordering on lithium diffusion in Li1.3Nb0.3Mn0.4O2 single-crystal cathode. Chem, 4(9), pp.2108-2123.
[18] Jones, M.A., Reeves, P.J., Seymour, I.D., Cliffe, M.J., Dutton, S.E. and Grey, C.P., 2019. Short-range ordering in a battery electrode, the ‘cation-disordered’rocksalt Li1.25 Nb0.25Mn0.5O2. Chemical Communications, 55(61), pp.9027-9030.
[19] Hohenberg, P. and Kohn, W., 1964. Inhomogeneous electron gas. Physical review, 136(3B), p.B864.
[20] Kohn, W. and Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), p.A1133.
[21] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I. and Dal Corso, A., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), p.395502.
[22] Giorgi, G., Fujisawa, J.I., Segawa, H. and Yamashita, K., 2013. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. The journal of physical chemistry letters, 4(24), pp.4213-4216.
[23] Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J. and Sutton, A.P., 1998. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Physical Review B, 57(3), p.1505.
[24] Sgroi, M.F., Lazzaroni, R., Beljonne, D. and Pullini, D., 2017. Doping LiMnPO4 with cobalt and nickel: a first principle study. Batteries, 3(2), p.11.
[25] Fronzi, M., Assadi, M.H.N. and Hanaor, D.A., 2019. Theoretical insights into the hydrophobicity of low index CeO2 surfaces. Applied Surface Science, 478, pp.68-74.
[26] Aikebaier, F., 2014. Effects of electron-electron interaction in pristine and doped graphene.
[27] Cococcioni, M. and De Gironcoli, S., 2005. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Physical Review B, 71(3), p.035105.
[28] Ren, S., Chen, R., Maawad, E., Dolotko, O., Guda, A.A., Shapovalov, V., Wang, D., Hahn, H. and Fichtner, M., 2015. Improved voltage and cycling for Li+ intercalation in high‐capacity disordered oxyfluoride cathodes. Advanced science, 2(10), p.1500128.
[29] Haas, P., Tran, F. and Blaha, P., 2009. Calculation of the lattice constant of solids with semilocal functionals. Physical Review B, 79(8), p.085104.