Physical Properties of Electrode Materials of Rechargeable Lithium Ion Batteries via DFT Calculations

Document Type : Original Article

Authors

1 Department of Physics, Faculty of Science, Sahand University of Technology, Tabriz, P.O. Box: 513351996, Iran

2 Department of Physics, Faculty of Science, Yasouj University, Yasouj, P.O. Box: 7591874934, Iran

Abstract

We performed a density functional theory (DFT) study on Li2VO2F to assess its electronic structure. All calculations were conducted employing the plane wave pseudopotentials basis set. Electronic structure of Li2VO2F was calculated in the framework of the Hubbard U density functional theory (DFT+U) method. The geometry of the unit cell was optimized in triclinic and monoclinic phases. The effect of adding the Hubbard parameter on the band structure as well as the partial density of states were investigated and the contribution of different atoms in the total density of states was investigated separately. Hubbard parameter added the electron-electron interaction in the calculations, which has led to an increase in the bandgap value and more accurate results compared to the existing experimental results. It was observed that the monoclinic phase exhibits a smaller gap bandwidth than the triclinic phase. Also the calculated band structure indicates the presence of an indirect gap in both phases of this compound.

Keywords

Main Subjects


© 2024 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1]      Goodenough, J.B. and Kim, Y., 2010. Challenges for rechargeable Li batteries. Chemistry of materials22(3), pp.587-603.
[2]      Schmuch, R., Wagner, R., Hörpel, G., Placke, T. and Winter, M., 2018. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature energy3(4), pp.267-278.
[3]      Zhang, H., Eshetu, G.G., Judez, X., Li, C., Rodriguez‐Martínez, L.M. and Armand, M., 2018. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angewandte Chemie International Edition57(46), pp.15002-15027.
[4]      Wang, X., Huang, Y., Ji, D., Omenya, F., Karki, K., Sallis, S., Piper, L.F., Wiaderek, K.M., Chapman, K.W., Chernova, N.A. and Whittingham, M.S., 2017. Structure evolution and thermal stability of high-energy-density Li-ion battery cathode Li2VO2F. Journal of The Electrochemical Society164(7), p.A1552.
[5]      Mozhzhukhina, N., Kullgren, J., Baur, C., Gustafsson, O., Brant, W.R., Fichtner, M. and Brandell, D., 2020. Short‐range ordering in the Li‐rich disordered rock salt cathode material Li2VO2F revealed by Raman spectroscopy. Journal of Raman Spectroscopy51(10), pp.2095-2101.
[6]      Nitta, N., Wu, F., Lee, J.T. and Yushin, G., 2015. Li-ion battery materials: present and future. Materials today18(5), pp.252-264.
[7]      Clément, R.J., Lun, Z. and Ceder, G., 2020. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy & Environmental Science13(2), pp.345-373.
[8]      Chen, R., Ren, S., Knapp, M., Wang, D., Witter, R., Fichtner, M. and Hahn, H., 2015. Disordered lithium‐rich oxyfluoride as a stable host for enhanced Li+ intercalation storage. Advanced Energy Materials5(9), p.1401814.
[9]      Cambaz, M.A., Vinayan, B.P., Euchner, H., Johnsen, R.E., Guda, A.A., Mazilkin, A., Rusalev, Y.V., Trigub, A.L., Gross, A. and Fichtner, M., 2018. Design of nickel-based cation-disordered rock-salt oxides: The effect of transition metal (M= V, Ti, Zr) substitution in LiNi0.5M0.5O2 binary systems. ACS applied materials & interfaces10(26), pp.21957-21964.
[10]    Chen, R., Ren, S., Yavuz, M., Guda, A.A., Shapovalov, V., Witter, R., Fichtner, M. and Hahn, H., 2015. Li+ intercalation in isostructural Li2VO3 and Li2VO2 F with O2− and mixed O2−/F− anions. Physical Chemistry Chemical Physics17(26), pp.17288-17295.
[11]    Pereira, N., Badway, F., Wartelsky, M., Gunn, S. and Amatucci, G.G., 2009. Iron oxyfluorides as high capacity cathode materials for lithium batteries. Journal of the Electrochemical Society156(6), p.A407.
[12]    Choi, W. and Manthiram, A., 2006. Superior capacity retention spinel oxyfluoride cathodes for lithium-ion batteries. Electrochemical and solid-state letters9(5), p.A245.
[13]    Källquist, I., Naylor, A.J., Baur, C., Chable, J., Kullgren, J., Fichtner, M., Edstrom, K., Brandell, D. and Hahlin, M., 2019. Degradation mechanisms in Li2VO2F Li-rich disordered rock-salt cathodes. Chemistry of Materials31(16), pp.6084-6096.
[14]    Baur, C., Källquist, I., Chable, J., Chang, J.H., Johnsen, R.E., Ruiz-Zepeda, F., Mba, J.M.A., Naylor, A.J., Garcia-Lastra, J.M., Vegge, T. and Klein, F., 2019. Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes. Journal of Materials Chemistry A7(37), pp.21244-21253.
[15]    Kwon, D.H., Lee, J., Artrith, N., Kim, H., Wu, L., Lun, Z., Tian, Y., Zhu, Y. and Ceder, G., 2020. The impact of surface structure transformations on the performance of Li-excess cation-disordered rocksalt cathodes. Cell Reports Physical Science1(9).
[16]    Clément, R.J., Kitchaev, D., Lee, J. and Ceder, G., 2018. Short-range order and unusual modes of nickel redox in a fluorine-substituted disordered rocksalt oxide lithium-ion cathode. Chemistry of Materials30(19), pp.6945-6956.
[17]    Kan, W.H., Deng, B., Xu, Y., Shukla, A.K., Bo, T., Zhang, S., Liu, J., Pianetta, P., Wang, B.T., Liu, Y. and Chen, G., 2018. Understanding the effect of local short-range ordering on lithium diffusion in Li1.3Nb0.3Mn0.4O2 single-crystal cathode. Chem4(9), pp.2108-2123.
[18]    Jones, M.A., Reeves, P.J., Seymour, I.D., Cliffe, M.J., Dutton, S.E. and Grey, C.P., 2019. Short-range ordering in a battery electrode, the ‘cation-disordered’rocksalt Li1.25 Nb0.25Mn0.5O2Chemical Communications55(61), pp.9027-9030.
[19]    Hohenberg, P. and Kohn, W., 1964. Inhomogeneous electron gas. Physical review136(3B), p.B864.
[20]    Kohn, W. and Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Physical review140(4A), p.A1133.
[21]    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I. and Dal Corso, A., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter21(39), p.395502.
[22]    Giorgi, G., Fujisawa, J.I., Segawa, H. and Yamashita, K., 2013. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. The journal of physical chemistry letters4(24), pp.4213-4216.
[23]    Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J. and Sutton, A.P., 1998. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Physical Review B57(3), p.1505.
[24]    Sgroi, M.F., Lazzaroni, R., Beljonne, D. and Pullini, D., 2017. Doping LiMnPO4 with cobalt and nickel: a first principle study. Batteries3(2), p.11.
[25]    Fronzi, M., Assadi, M.H.N. and Hanaor, D.A., 2019. Theoretical insights into the hydrophobicity of low index CeO2 surfaces. Applied Surface Science478, pp.68-74.
[26]    Aikebaier, F., 2014. Effects of electron-electron interaction in pristine and doped graphene.
[27]    Cococcioni, M. and De Gironcoli, S., 2005. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Physical Review B71(3), p.035105.
[28]    Ren, S., Chen, R., Maawad, E., Dolotko, O., Guda, A.A., Shapovalov, V., Wang, D., Hahn, H. and Fichtner, M., 2015. Improved voltage and cycling for Li+ intercalation in high‐capacity disordered oxyfluoride cathodes. Advanced science2(10), p.1500128.
[29]    Haas, P., Tran, F. and Blaha, P., 2009. Calculation of the lattice constant of solids with semilocal functionals. Physical Review B79(8), p.085104.