[1] Kazazi, M., 2019. High-performance electrode based on electrochemical polymerization of polypyrrole film on electrophoretically deposited CNTs conductive framework for supercapacitors. Solid State Ionics, 336, pp. 80–86.
[2] Conway, B.E., 1999. Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Press, New York.
[3] Simon, P. and Gogotsi, Y., 2008. Material for electrochemical capacitors. Nature. Materials, 7, pp. 845–854.
[4] Zhu, Y.W., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W.W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A. and Ruoff, R.S., 2011. Carbon-based supercapacitors produced by activation of graphene. Science, 332, pp. 1537–1541.
[5] Lee, J.W., Ahn, T., Soundararajan, D., Ko, J.M. and Kim, J.D., 2011. Non-aqueous approach to the preparation of reduced graphene oxide/⍺ ̵ Ni(OH)₂ hybrid composites and their high capacitance behavior. Chemical Communications, 47, pp. 6305–6307.
[6] Kazazi, M., 2019. High-performance electrode based on electrochemical polymerization of polypyrrole film on electrophoretically deposited CNTs conductive framework for supercapacitors. Solid State Ionics, 336, pp. 80–86.
[7] Zhang, K., Zhang, L.L., Zhao, X.S. and Wu, J., 2010. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials, 22, pp. 1392–1401.
[8] Frackowiak, E., Metenier, K., Bertagna, V. and Beguin, F., 2000. Supercapacitor electrodes from multi-walled carbon nanotubes. Applied Physics Letters, 77, pp. 2421–2423.
[9] Kim, C. and Yang, K.S., 2003. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Applied Physics Letters, 83, pp, 1216–1218.
[10] Ghotbi, M.Y. and Azadfalah, M., 2011. Design of a layered nanoreactor to produce nitrogen doped carbon nanosheets as highly efficient material for supercapacitors. Chemical Communications, 47, pp, 6305–6307.
[11] Cottineau, T., Toupin, M., Delahaye, T., Brousse, T. and Belanger, D., 2006. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Applied Physics A, 82, pp. 599–606.
[12] Yuan, C., Wu, H.B., Xie, Y. and Lou, X.W.D., 2014. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angewandte Chemie International Edition, 53, pp. 1488–1504.
[13] Mazinani, B., Kazazi, M., Mobarhan, G., and Shokouhimehr, M.R., 2019. The combustion synthesis of Ag-doped MnCo2O4 nanoparticles for supercapacitor applications. Journal of the Minerals, Metals and Materials,71, pp. 1499-1506.
[14] Dubal, D.P., Lee, S.H., Kim, J.G., Kim, W.B. and Lokhande, C.D., 2012. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materrials Chemistry, 22, pp. 3044–3052.
[15] Wang, K., Zhang, X., Li, C., Zhang, H., Sun, X., Xu, N. and Ma, Y., 2014. Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance. Journal of Materrials Chemistry, 2, pp. 19726–19732.
[16] Kazazi, M., 2017. Facile preparation of nanoflake-structured nickel oxide/carbon nanotube composite films by electrophoretic deposition as binder-free electrodes for highperformance pseudocapacitors. Current Applied Physics, 17, pp. 240–248.
[17] Kazazi, M. and Karami, R., 2017. Hydrothermal synthesis and electrochemical characterization of mesoporous NixCo3-xO4 (0≤ x≤ 1) nanorods as electrode materials for highperformance electrochemical capacitors. Solid State Ionics, 308, pp. 8–15.
[18] Kazazi, M., Sedighi, A.R. and Mokhtari, M.A., 2018. Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes. Applied Surface Science, 441, pp. 251–257.
[19] Faraji, S. and Ani, F. N., 2014. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors. Journal of Power Sources, 263, pp. 338–360.
[20] Thota, S., Kumar, A. and Kumar, J., 2009. Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol-gel derived oxalates. Materials Science and Engineering: B, 164, pp. 30–37.
[21] Guo, Q., Guo, X. and Tian, Q., 2010. Optionally ultra-fast synthesis of CoO / Co3O4 particles using CoCl2 solution via a versatile spray roasting method. Advanced Powder Technology, 21, pp. 529–533.
[22] Chen, J., Wu, X. and Selloni, A., 2011. Electronic structure and bonding properties of cobalt oxide in the spinel structure. Physical Review B, 245204, pp. 1–7.
[23] Fang, H., Zhang, S., Liu, W., Du, Z., Wu, X. and Xing, Y., 2013. Hierarchical Co3O4 multiwalled carbon nanotube nano cable films with superior cyclability and high lithium storage capacity. Electrochimica Acta, 108, pp. 651–659.
[24] Deng, J., Kang, L., Bai, G., Li, Y., Li, P. and Liu, X., 2014. Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4 / CoO) nanoparticles as supercapacitor electrode materials. Electrochimica Acta, 132, pp. 127–135.
[25] Wu, J.B., Lin, Y., Xia, X.H., Xu, J.Y. and Shi, Q.Y., 2011. Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film. Electrochimica Acta, 56, pp. 7163–7170.
[26] Zhu, Y., Ji, X., Wu, Z., Song, W., Hou, H., Wu, Z., He, X., Chen, Q. and Banks, C.E., 2014. Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties. Journal of Power Sources, 267, pp. 888–900.
[27] Wei, T.Y., Chen, C.H., Chien, H.C., Lu, S.Y. and Hu, C.C., 2010. A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Process. Advanced Materials, 22, pp. 347–351.
[28] Liu, Y., Wang, N., Yang, C. and Hu, W., 2016. Sol-gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes. Ceramics International, 42, pp. 11411–11416.
[29] Chadwick, A.V., Savin, S.L.P., Fiddy, S., Alcantara, R., Lisbona, D.F., Lavela, P., Ortiz, G.F. and Tirado, J.L., 2007. Electrochemical Conversion Reaction of NiFe2O4 Electrode as an Anode Material for Li-Ion Battery. The Journal of Physical Chemistry C, 111, pp. 4636–4642.
[30] Wu, H.B., Pang, H. and Lou, X.W., 2013. Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy & Environmental Science, 6, pp. 3619–3626.
[31] Rios, E., Nguyen-Cong, H., Marco, J.F., Gancedo, J.R., Chartier, P. and Gautier, J.L., 2000. Indirect oxidation of ethylene glycol by peroxide ions at Ni0.3Co2.7O4 spinel oxide thin film electrodes. Electrochimica Acta, 45, pp. 4431–4440.
[32] Yuan, C., Li, J., Hou, L., Lin, J., Pang, G., Zhang, L., Lian, L. and Zhang, X., 2013. emplate-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Advances, 3, pp. 18573–18578.
[33] Huang, L., Zhang, W., Xiang, J. and Huang, Y., 2016. Porous NiCo2O4/C nanofibers replicated by cotton template as high-rate electrode materials for supercapacitors. Journal of Materials, 2, pp. 248-255.
[34] Khalid, S., Cao, C., Ahmad, A., Wang, L., Tanveer, M., Aslam, I., Tahir, M., Idrees, F. and Zhu, Y., 2015. Microwave assisted synthesis of mesoporous NiCo2O4 nanosheets as electrode material for advanced flexible supercapacitors. RSC Advanced, 5, pp. 33146- 33154.
[35] Che, H., Liu, A., Mu, J., Bai, Y., Wu, C., Zhang, X., Zhang, Z. and Wang, G., 2017. Facile synthesis of flower-like NixCo3–xO4 (0 ≤ x ≤ 1.5) microstructures as high-performance electrode materials for supercapacitors. Electrochimcal Acta, 225, pp. 283–291.
[36] Belkessam, C., Mechouet, M., Idiri, N., Kadri, A. and Djelali, N., 2019. Synthesis and characterization of Ni0.3Co2.7O4 oxide nanoparticles immobilized in Teflon cavity electrode for organic pollutants degradation. Materials Research Express, 6, pp. 105032.
[37] Ding, R., Qi, L., Jia, M. and Wang, H., 2013. Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid ACNiCo2O4 electrochemical capacitors Electrochimcal Acta, 107, pp. 494–502.
[38] Kazazi, M. and Faryabi, M., 2020. Electrochemically anchored manganese hexacyanoferrate nanocubes on three-dimensional porous graphene scaffold: Towards a potential application in high-performance asymmetric supercapacitors. Journal of Power Sources, 449, pp. 227510.