[1] Yue, L., Chen, L., Wang, X., Lu, D., Zhou, W., Shen, D., Yang, Q., Xiao, S. and Li, Y., 2023. Ni/Co-MOF@ aminated MXene hierarchical electrodes for high-stability supercapacitors. Chemical Engineering Journal, 451, p.138687.
[2] Salmani, H. and Bahari, A., 2019. GO/C2S gate dielectric material for nanoscale devices obtained via Pechini method. Surface Engineering and Applied Electrochemistry, 55, pp.379-389.
[3] Kenari, K.H., Bahari, A. and Lashkenari, M.S., 2023. Widely improved supercapacitance properties of zirconium‑cobalt ferrite nanoparticles by N-doped graphene oxide as an electrode in supercapacitor. Journal of Energy Storage, 74, p.109274.
[4] Moghaddam, M.S., Bahari, A. and Litkohi, H.R., 2023. Using the synergistic effects of MoS2/rGO and bimetallic hybrids as a high-performance nanoelectrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 48(85), pp.33139-33154.
[5] Acharya, D., Pathak, I., Dahal, B., Lohani, P.C., Bhattarai, R.M., Muthurasu, A., Kim, T., Ko, T.H., Chhetri, K. and Kim, H.Y., 2023. Immoderate nanoarchitectures of bimetallic MOF derived Ni–Fe–O/NPC on porous carbon nanofibers as freestanding electrode for asymmetric supercapacitors. Carbon, 201, pp.12-23.
[6] Liu, R., Zhou, A., Zhang, X., Mu, J., Che, H., Wang, Y., Wang, T.T., Zhang, Z. and Kou, Z., 2021. Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chemical Engineering Journal, 412, p.128611.
[7] Lv, H., Zhang, X., Wang, F., Lv, G., Yu, T., Lv, M., Wang, J., Zhai, Y. and Hu, J., 2020. ZIF-67-assisted construction of hollow core/shell cactus-like MnNiCo trimetal electrodes and Co, N dual-doped carbon electrodes for high-performance hybrid supercapacitors. Journal of Materials Chemistry A, 8(28), pp.14287-14298.
[8] Hao, C., Wang, X., Wu, X., Guo, Y., Zhu, L. and Wang, X., 2022. Composite material CCO/Co-Ni-Mn LDH made from sacrifice template CCO/ZIF-67 for high-performance supercapacitor. Applied Surface Science, 572, p.151373.
[9] Trivedi, H., Verma, K.D., Sinha, P. and Kar, K.K., 2021. Current collector material selection for supercapacitors. Handbook of Nanocomposite Supercapacitor Materials III: Selection, pp.271-311.
[10] Li, L., Wu, Z., Yuan, S. and Zhang, X.B., 2014. Advances and challenges for flexible energy storage and conversion devices and systems. Energy & Environmental Science, 7(7), pp.2101-2122.
[11] Fu, H., Zhang, A., Jin, F., Guo, H. and Liu, J., 2022. Ternary NiCeCo-layered double hydroxides grown on CuBr2@ ZIF-67 nanowire arrays for high-performance supercapacitors. ACS Applied Materials & Interfaces, 14(14), pp.16165-16177.
[12] Ediati, R., Elfianuar, P., Santoso, E., Oktavia Sulistiono, D. and Nadjib, M., 2019. Synthesis of MCM-41/ZIF-67 composite for enhanced adsorptive removal of methyl orange in aqueous solution. Mesoporous Materials-Properties and Applications, pp.1-14.
[13] Zhang, L., Cai, P., Wei, Z., Liu, T., Yu, J., Al-Ghamdi, A.A. and Wageh, S., 2021. Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. Journal of Colloid and Interface Science, 588, pp.637-645.
[14] Ghadimi, A.M., Ghasemi, S., Omrani, A. and Mousavi, F., 2023. Nickel cobalt LDH/graphene film on nickel-foam-supported ternary transition metal oxides for supercapacitor applications. Energy & Fuels, 37(4), pp.3121-3133.
[15] Hu, G., Zhang, W., Chen, Y., Xu, C., Liu, R. and Han, Z., 2020. Removal of boron from water by GO/ZIF-67 hybrid material adsorption. Environmental Science and Pollution Research, 27, pp.28396-28407.
[16] Le, K., Wang, Z., Wang, F., Wang, Q., Shao, Q., Murugadoss, V., Wu, S., Liu, W., Liu, J., Gao, Q. and Guo, Z., 2019. Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Transactions, 48(16), pp.5193-5202.
[17] Li, M., Cheng, J.P., Liu, F. and Zhang, X.B., 2015. 3D-architectured nickel–cobalt–manganese layered double hydroxide/reduced graphene oxide composite for high-performance supercapacitor. Chemical Physics Letters, 640, pp.5-10.
[18] Najjar, R., Awad, R. and Abdel-Gaber, A.M., 2019. Physical properties of Mn2O3 nanoparticles synthesized by Co-precipitation method at different pH values. Journal of Superconductivity and Novel Magnetism, 32, pp.885-892.
[19] Ghasemi, S., Hosseini, S.R. and Mousavi, F., 2017. Electrophoretic deposition of graphene nanosheets: A suitable method for fabrication of silver-graphene counter electrode for dye-sensitized solar cell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, pp.477-487.
[20] Li, F., Sun, Z., Jiang, H., Ma, Z., Wang, Q. and Qu, F., 2020. Ion-exchange synthesis of ternary FeCoNi-layered double hydroxide nanocage toward enhanced oxygen evolution reaction and supercapacitor. Energy & Fuels, 34(9), pp.11628-11636.
[21] Shajari, D., Bahari, A., Gill, P. and Mohseni, M., 2017. Synthesis and tuning of gold nanorods with surface plasmon resonance. Optical Materials, 64, pp.376-383.