[1] Li, S.-L., Y. Song, L.-N. Ma, and H.-L. Wang, 2024. Femtosecond-laser-inscribed cladding waveguides in KTiOPO4 crystal for second-harmonic generation and Y-branch splitters. Frontiers in Physics, 12, pp. 1341210.
[2] Zhou, H., X. He, W. Wu, J. Tong, J. Wang, Y. Zuo, Y. Wu, C. Zhang, and Z. Hu, 2023. Hydrothermal growth of KTiOPO4 crystal for electro-optical application. Light: Science & Applications, 12(1), pp. 23.
[3] Taziev, R. and V. Atuchin, 2022. Analysis of SAW Temperature Properties in KTiOPO4 Single Crystal. Materials, 16(1), pp. 69.
[4] Guretskii, S., I. Kolesova, A. Kravtsov, A. Mit’kovets, E. Trukhanova, and A. Linkevich, 2015. Effect of growth conditions on the optical homogeneity of KTiOPO 4 crystals. Inorganic Materials, 51, pp.913-915.
[5] Zumsteg, F., J. Bierlein, and T. Gier, 1976. K x Rb1− x TiOPO4: a new nonlinear optical material. Journal of Applied Physics, 47(11), pp. 4980-4985.
[6] Sadhasivam, S., R.N. Perumal, and P. Ramasamy, 2015. Flux growth and grey colouration characteristics in KTiOPO4: Ln (Ln= Yb, Nd, Ho, Er, La). Journal of crystal growth, 431, pp.32-38.
[7] Bierlein, J.D. and H. Vanherzeele, 1989. Potassium titanyl phosphate: properties and new applications. JOSA B, 6(4), pp. 622-633.
[8] Bordui, P.F. and M.M. Fejer, 1993. Inorganic crystals for nonlinear optical frequency conversion. Annual Review of Materials Science, 23(1), pp. 321-379.
[9] Maslov, V.A., V. Mikhailov, O.P. Shaunin, and I.A. Shcherbakov, 1997. Nonlinear absorption in KTP crystals. Quantum Electronics, 27(4), pp. 356.
[10] Mamrashev, A., N. Nikolaev, V. Antsygin, Y. Andreev, G. Lanskii, and A. Meshalkin, 2018. Optical properties of KTP crystals and their potential for terahertz generation. Crystals, 8(8), pp. 310.
[11] Kannan, C., S. Ganesamoorthy, A. Miyazaki, H. Kimura, and P. Ramasamy, 2005. Effect of chromium on optical and electrical properties of self-flux grown KTiOPO4 single crystals. Ferroelectrics, 326(1), pp. 123-128.
[12] Elaheh, G. and J.T. Majid, 2015. The effect of cooling rate on size, quality and morphology of KTiOPO4 (KTP) crystals grown by different nucleation techniques. Crystal Research and Technology, 50(8), pp. 603-612.
[13] Roth, M. and M. Tseitlin, 2010. Growth of large size high optical quality KTP-type crystals. Journal of crystal growth, 312(8), pp. 1059-1064.
[14] Galceran, M., M. Pujol, J. Carvajal, S. Tkaczyk, I. Kityk, F. Díaz, and M. Aguiló, 2008. Synthesis and characterization of KTiOPO4 nanocrystals and their PMMA nanocomposites. Nanotechnology, 20(3), pp. 035705.
[15] Goyal, M. and M. Singh, 2020. Size and shape dependence of optical properties of nanostructures. Applied Physics A, 126, pp.1-8.
[16] Jalava, J.-P., V.-M. Taavitsainen, R.-J. Lamminmäki, M. Lindholm, S. Auvinen, M. Alatalo, E. Vartiainen, and H. Haario, 2015. Modeling TiO2׳ s refractive index function from bulk to nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 167, pp.105-118.
[17] Patel, G. and T. Pandya, 2018. Effect of size and shape on static Refractive Index, Dielectric constant and Band gap of Nano solids. Physics and Applied Sciences, 6(1), pp. 37-42.
[18] Arora, N. and D.P. Joshi, 2017. Thermodynamic study of nanometals for different shapes and sizes . Indian J Pure & Appl Phys, 55, pp. 284-292.
[19] Baral, B., A. Altaee, K. Simeonidis, and A.K. Samal, 2024. Shape and size dependent nanostructures for environmental applications. Frontiers in Chemistry, 12, pp.1-5
[20] Pachauri, U., D.P. Joshi, and N. Arora, 2020. Theoretical model for size, dimension and shape effect on electrical behavior of semiconductor nanomaterials. Applied Physics A, 126, pp.1-11.
[21] Tohgha, U.N., J.T. Ly, K.M. Lee, Z.M. Marsh, A.M. Watson, T.A. Grusenmeyer, N.P. Godman, and M.E. McConney, 2024. Switchable Optical Properties of Dyes and Nanoparticles in Electrowetting Devices. Nanomaterials, 14(2), pp. 142.
[22] Altammar, K.A., 2023. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers in Microbiology, 14, pp.1155622.
[23] Qi, W., 2005. Size effect on melting temperature of nanosolids. Physica B: Condensed Matter, 368(1-4), pp. 46-50.
[24] Abbasi, R., G. Shineh, M. Mobaraki, S. Doughty, and L. Tayebi, 2023. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research, 25(3), pp. 43.
[25] Malekfar, R., A. Cheraghi, G. Ahmadi, and M. Khanzadeh, 2009. Raman Spectra and Structural Data of the Nanocrystalline KTP (KTiOPO_4) Synthesized by Pechini Method. Acta Physica Polonica A, 116(6), pp. 1073-1075.
[26] Malekfar, R., G. Ahmadi, A. Cheraghi, J. Rohollahnejad, F. Sahraiyan, and M. Khanzadeh, 2009. Micro-Raman scattering of KTP (KTiOPO4) nanocrystallites synthesized by modified sol–gel Pechini method. Vibrational Spectroscopy, 51(2), pp. 308-312.
[27] Biswas, S.K., A. Pathak, and P. Pramanik, 2007. Synthesis of nanocrystalline ktiopo4 powder by chemical method. Journal of the American Ceramic Society, 90(4), pp. 1071-1076.
[28] Gharibshahian, E., M.J. Tafershi, and M. Fazli, 2018. Effects of solution concentration and capping agents on the properties of potassium titanyl phosphate noparticles synthesized using a co-precipitation method. Journal of Physics and Chemistry of Solids, 116, pp.241-249.
[29] Gharibshahian, E., M.J. Tafreshi, and M. Behzad, 2020. The effects of solution pH on structural, optical and electrical properties of KTiOPO4 (KTP) nanoparticles synthesized by hydrothermal method. Optical Materials, 109, pp.110230.
[30] Madari, N., E. Gharibshahian, and M. Tafreshi, 2022. Novel synthesis of KTP nanoparticles by combustion method using urea and glycine fuels. Applied Physics A, 128, pp.1-14.
[31] Wnuk, P., L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J.-F. Roch, D. Chauvat, and C. Radzewicz, 2009. Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses. Optics Express, 17(6), pp. 4652-4658.
[32] Nguyen, D.T.T. and N.D. Lai, 2019. Deterministic insertion of KTP nanoparticles into polymeric structures for efficient second-harmonic generation. Crystals, 9(7), pp. 365.
[33] Zhou, C., L. Le Xuan, A. Slablab, N. Sandeau, S. Brasselet, D. Chauvat, and J.-F. Roch, 2008. Investigation of KTiOPO4 nanocrystals by means of second-harmonic light emission. Chinese Optics Letters, 6(1), pp. 64-67.
[34] Nikolaev, I.V. and N.G. Korobeishchikov, 2021. Influence of the Parameters of Cluster Ions on the Formation of Nanostructures on the KTP Surface. Applied Nano, 2(1), pp. 25-30.
[35] Fan, X., W. Zheng, and D.J. Singh, 2014. Light scattering and surface plasmons on small spherical particles. Light: Science & Applications, 3(6), pp. e179-e179.
[36] Mie, G., 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik, 330(3), pp. 377-445.
[37] Horvath, H., 2009. Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(11), pp. 787-799.
[38] Gharibshahi, E., B.D. Young, A.S. Bhalla, and R. Guo, 2020. Theory, simulation and experiment of optical properties of cobalt ferrite (CoFe2O4) nanoparticles. Journal of Materials Science & Technology, 57, pp.180-187.
[39] Gharibshahi, E. and M. Alamaniotis, 2022. Simulation and modeling of optical properties of U, Th, Pb, and Co nanoparticles of interest to nuclear security using finite element analysis. Nanomaterials, 12(10), pp. 1710.
[40] Zutterman, F. and B. Champagne, 2021. Simulation of absorption and scattering spectra of crystalline organic nanoparticles with the discrete dipole approximation: Effects of crystal shape, crystal size, and refractive index of the medium. The Journal of Chemical Physics, 155(16), pp.164703.
[41] Kato, K. and E. Takaoka, 2002. Sellmeier and thermo-optic dispersion formulas for KTP. Applied optics, 41(24), pp. 5040-5044.
[42] Di Finizio, S., A. Peña, T. Trifonov, J. Carvajal, M. Aguiló, J. Pallarés, A. Rodriguez, R. Alcubilla, L. Marsal, and F. Díaz, 2006. Growth of 2D KTP photonic crystals for efficient second order nonlinear optical processes. in Photonic Crystal Materials and Devices III (ie V). SPIE, 6182, pp. 61820x1-61820x7.
[43] Butt, H., T.D. Wilkinson, and G.A. Amaratunga, 2012. Fem modeling of periodic arrays of multiwalled carbon nanotubes. Progress In Electromagnetics Research M, 22, pp.1-12.
[44] Makwana, M.P., R. Craster, and S. Guenneau, 2019. Novel topological beam-splitting in photonic crystals. arXiv preprint arXiv Physics. Optics,2, pp.1902.00072.
[45] Bora, T., A. Dousse, K. Sharma, K. Sarma, A. Baev, G.L. Hornyak, and G. Dasgupta, 2018. Modeling nanomaterial physical properties: theory and simulation. International Journal of Smart and Nano Materials,1947-5411, pp. 1-28.
[46] Anttu, N., H. Mäntynen, A. Sorokina, J. Turunen, T. Sadi, and H. Lipsanen, 2021. Applied electromagnetic optics simulations for nanophotonics. Journal of Applied Physics, 129(13), pp.131102.
[47] Onyia, A.I., H.I. Ikeri, and A.I. Chima, 2020. Surface and quantum effects in nanosized semiconductor. American Journal of Nano Research and Applications, 8(3), pp. 35-41.
[48] Yao, L., G. Huang, H. Chen, and M.V. Barnhart, 2019. A modified smoothed finite element method (M-SFEM) for analyzing the band gap in phononic crystals. Acta Mechanica, 230, pp.2279-2293.
[49] Lucklum, F. and M.J. Vellekoop, 2018. Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice. Applied Physics Letters, 113(20), pp.201902.
[50] Chang, Z., Fundamentals of attosecond optics. 2016: CRC press, chap1, pp.1-46.