Simulation of size effects on the optical properties of KTP nanoparticles

Document Type : Original Article

Authors

Faculty of Physics, Semnan University, P.O.Box 35195-363, Semnan, Iran

Abstract

KTiOPO4 (KTP) is a non-linear optical crystal with high non-linear optical coefficients and an optical damage threshold that has wide applications in optical devices. The optical properties of KTP nanoparticles are critical in nanotechnology. This study employs COMSOL Multiphysics software and the finite element method (FEM) in order to examine the effects of particle size (10 to 100 nm) on the optical properties of spherical KTP nanoparticles, including refractive index dispersion, scattering cross-section, band gap energy, and cut-off wavelength. The obtained results were compared with the available experimental data. The results of this research showed that the refractive index dispersion and scattering cross-section for KTP nanoparticles follow the FEM model and Mei's theory for spherical nanoparticles. For radiated light with a specific wavelength, decrease in the size of KTP nanoparticles causes a decrease in the scattering cross-section, refractive index, and absorption edge wavelength. By decreasing the particle size from 100 nm to 50 nm, the refractive index remained almost constant at 1.81 and decreased slightly with further decrease in particle size to 20 nm. Also, reducing the particle size below 20 nm decreased the refractive index to 1.80. The band gap energy of KTP nanoparticles increased from 3.9 eV to 6.27 eV as the particle size decreased from 100 nm to 10 nm. However, a significant increase in band gap energy was observed when particle size decreased from 20 nm to 10 nm. The results of the simulation work were found to be consistent with the previous reports.

Keywords

Main Subjects


© 2024 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1]    Li, S.-L., Y. Song, L.-N. Ma, and H.-L. Wang, 2024. Femtosecond-laser-inscribed cladding waveguides in KTiOPO4 crystal for second-harmonic generation and Y-branch splitters. Frontiers in Physics, 12, pp. 1341210.
[2]    Zhou, H., X. He, W. Wu, J. Tong, J. Wang, Y. Zuo, Y. Wu, C. Zhang, and Z. Hu, 2023. Hydrothermal growth of KTiOPO4 crystal for electro-optical application. Light: Science & Applications, 12(1), pp. 23.
[3]    Taziev, R. and V. Atuchin, 2022. Analysis of SAW Temperature Properties in KTiOPO4 Single Crystal. Materials, 16(1), pp. 69.
[4]    Guretskii, S., I. Kolesova, A. Kravtsov, A. Mit’kovets, E. Trukhanova, and A. Linkevich, 2015. Effect of growth conditions on the optical homogeneity of KTiOPO 4 crystals. Inorganic Materials, 51, pp.913-915.
[5]    Zumsteg, F., J. Bierlein, and T. Gier, 1976. K x Rb1− x TiOPO4: a new nonlinear optical material. Journal of Applied Physics, 47(11), pp. 4980-4985.
[6]    Sadhasivam, S., R.N. Perumal, and P. Ramasamy, 2015. Flux growth and grey colouration characteristics in KTiOPO4: Ln (Ln= Yb, Nd, Ho, Er, La). Journal of crystal growth, 431, pp.32-38.
[7]    Bierlein, J.D. and H. Vanherzeele, 1989. Potassium titanyl phosphate: properties and new applications. JOSA B, 6(4), pp. 622-633.
[8]    Bordui, P.F. and M.M. Fejer, 1993. Inorganic crystals for nonlinear optical frequency conversion. Annual Review of Materials Science, 23(1), pp. 321-379.
[9]    Maslov, V.A., V. Mikhailov, O.P. Shaunin, and I.A. Shcherbakov, 1997. Nonlinear absorption in KTP crystals. Quantum Electronics, 27(4), pp. 356.
[10]  Mamrashev, A., N. Nikolaev, V. Antsygin, Y. Andreev, G. Lanskii, and A. Meshalkin, 2018. Optical properties of KTP crystals and their potential for terahertz generation. Crystals, 8(8), pp. 310.
[11] Kannan, C., S. Ganesamoorthy, A. Miyazaki, H. Kimura, and P. Ramasamy, 2005. Effect of chromium on optical and electrical properties of self-flux grown KTiOPO4 single crystals. Ferroelectrics, 326(1), pp. 123-128.
[12] Elaheh, G. and J.T. Majid, 2015. The effect of cooling rate on size, quality and morphology of KTiOPO4 (KTP) crystals grown by different nucleation techniques. Crystal Research and Technology, 50(8), pp. 603-612.
[13] Roth, M. and M. Tseitlin, 2010. Growth of large size high optical quality KTP-type crystals. Journal of crystal growth, 312(8), pp. 1059-1064.
[14] Galceran, M., M. Pujol, J. Carvajal, S. Tkaczyk, I. Kityk, F. Díaz, and M. Aguiló, 2008. Synthesis and characterization of KTiOPO4 nanocrystals and their PMMA nanocomposites. Nanotechnology, 20(3), pp. 035705.
[15] Goyal, M. and M. Singh, 2020. Size and shape dependence of optical properties of nanostructures. Applied Physics A, 126, pp.1-8.
[16] Jalava, J.-P., V.-M. Taavitsainen, R.-J. Lamminmäki, M. Lindholm, S. Auvinen, M. Alatalo, E. Vartiainen, and H. Haario, 2015. Modeling TiO2׳ s refractive index function from bulk to nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 167, pp.105-118.
[17] Patel, G. and T. Pandya, 2018. Effect of size and shape on static Refractive Index, Dielectric constant and Band gap of Nano solids. Physics and Applied Sciences, 6(1), pp. 37-42.
[18] Arora, N. and D.P. Joshi, 2017. Thermodynamic study of nanometals for different shapes and sizes . Indian J Pure & Appl Phys, 55, pp. 284-292.
[19] Baral, B., A. Altaee, K. Simeonidis, and A.K. Samal, 2024. Shape and size dependent nanostructures for environmental applications. Frontiers in Chemistry, 12, pp.1-5
[20] Pachauri, U., D.P. Joshi, and N. Arora, 2020. Theoretical model for size, dimension and shape effect on electrical behavior of semiconductor nanomaterials. Applied Physics A, 126, pp.1-11.
[21] Tohgha, U.N., J.T. Ly, K.M. Lee, Z.M. Marsh, A.M. Watson, T.A. Grusenmeyer, N.P. Godman, and M.E. McConney, 2024. Switchable Optical Properties of Dyes and Nanoparticles in Electrowetting Devices. Nanomaterials, 14(2), pp. 142.
[22] Altammar, K.A., 2023. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers in Microbiology, 14, pp.1155622.
[23] Qi, W., 2005. Size effect on melting temperature of nanosolids. Physica B: Condensed Matter, 368(1-4), pp. 46-50.
[24] Abbasi, R., G. Shineh, M. Mobaraki, S. Doughty, and L. Tayebi, 2023. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research, 25(3), pp. 43.
[25] Malekfar, R., A. Cheraghi, G. Ahmadi, and M. Khanzadeh, 2009. Raman Spectra and Structural Data of the Nanocrystalline KTP (KTiOPO_4) Synthesized by Pechini Method. Acta Physica Polonica A, 116(6), pp. 1073-1075.
[26]  Malekfar, R., G. Ahmadi, A. Cheraghi, J. Rohollahnejad, F. Sahraiyan, and M. Khanzadeh, 2009. Micro-Raman scattering of KTP (KTiOPO4) nanocrystallites synthesized by modified sol–gel Pechini method. Vibrational Spectroscopy, 51(2), pp. 308-312.
[27]  Biswas, S.K., A. Pathak, and P. Pramanik, 2007. Synthesis of nanocrystalline ktiopo4 powder by chemical method. Journal of the American Ceramic Society, 90(4), pp. 1071-1076.
[28]  Gharibshahian, E., M.J. Tafershi, and M. Fazli, 2018. Effects of solution concentration and capping agents on the properties of potassium titanyl phosphate noparticles synthesized using a co-precipitation method. Journal of Physics and Chemistry of Solids, 116, pp.241-249.
[29]  Gharibshahian, E., M.J. Tafreshi, and M. Behzad, 2020. The effects of solution pH on structural, optical and electrical properties of KTiOPO4 (KTP) nanoparticles synthesized by hydrothermal method. Optical Materials, 109, pp.110230.
[30]  Madari, N., E. Gharibshahian, and M. Tafreshi, 2022. Novel synthesis of KTP nanoparticles by combustion method using urea and glycine fuels. Applied Physics A, 128, pp.1-14.
[31]  Wnuk, P., L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J.-F. Roch, D. Chauvat, and C. Radzewicz, 2009. Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses. Optics Express, 17(6), pp. 4652-4658.
[32]  Nguyen, D.T.T. and N.D. Lai, 2019. Deterministic insertion of KTP nanoparticles into polymeric structures for efficient second-harmonic generation. Crystals, 9(7), pp. 365.
[33]  Zhou, C., L. Le Xuan, A. Slablab, N. Sandeau, S. Brasselet, D. Chauvat, and J.-F. Roch, 2008. Investigation of KTiOPO4 nanocrystals by means of second-harmonic light emission. Chinese Optics Letters, 6(1), pp. 64-67.
[34]  Nikolaev, I.V. and N.G. Korobeishchikov, 2021. Influence of the Parameters of Cluster Ions on the Formation of Nanostructures on the KTP Surface. Applied Nano, 2(1), pp. 25-30.
[35]  Fan, X., W. Zheng, and D.J. Singh, 2014. Light scattering and surface plasmons on small spherical particles. Light: Science & Applications, 3(6), pp. e179-e179.
[36]  Mie, G., 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik, 330(3), pp. 377-445.
[37]  Horvath, H., 2009. Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(11), pp. 787-799.
[38]  Gharibshahi, E., B.D. Young, A.S. Bhalla, and R. Guo, 2020. Theory, simulation and experiment of optical properties of cobalt ferrite (CoFe2O4) nanoparticles. Journal of Materials Science & Technology, 57, pp.180-187.
[39]  Gharibshahi, E. and M. Alamaniotis, 2022. Simulation and modeling of optical properties of U, Th, Pb, and Co nanoparticles of interest to nuclear security using finite element analysis. Nanomaterials, 12(10), pp. 1710.
[40] Zutterman, F. and B. Champagne, 2021. Simulation of absorption and scattering spectra of crystalline organic nanoparticles with the discrete dipole approximation: Effects of crystal shape, crystal size, and refractive index of the medium. The Journal of Chemical Physics, 155(16), pp.164703.
[41] Kato, K. and E. Takaoka, 2002. Sellmeier and thermo-optic dispersion formulas for KTP. Applied optics, 41(24), pp. 5040-5044.
[42] Di Finizio, S., A. Peña, T. Trifonov, J. Carvajal, M. Aguiló, J. Pallarés, A. Rodriguez, R. Alcubilla, L. Marsal, and F. Díaz, 2006. Growth of 2D KTP photonic crystals for efficient second order nonlinear optical processes. in Photonic Crystal Materials and Devices III (ie V).  SPIE, 6182, pp. 61820x1-61820x7.
[43] Butt, H., T.D. Wilkinson, and G.A. Amaratunga, 2012. Fem modeling of periodic arrays of multiwalled carbon nanotubes. Progress In Electromagnetics Research M, 22, pp.1-12.
[44] Makwana, M.P., R. Craster, and S. Guenneau, 2019. Novel topological beam-splitting in photonic crystals. arXiv preprint arXiv Physics. Optics,2, pp.1902.00072.
[45] Bora, T., A. Dousse, K. Sharma, K. Sarma, A. Baev, G.L. Hornyak, and G. Dasgupta, 2018. Modeling nanomaterial physical properties: theory and simulation. International Journal of Smart and Nano Materials,1947-5411, pp. 1-28.
[46] Anttu, N., H. Mäntynen, A. Sorokina, J. Turunen, T. Sadi, and H. Lipsanen, 2021. Applied electromagnetic optics simulations for nanophotonics. Journal of Applied Physics, 129(13), pp.131102.
[47] Onyia, A.I., H.I. Ikeri, and A.I. Chima, 2020. Surface and quantum effects in nanosized semiconductor. American Journal of Nano Research and Applications, 8(3), pp. 35-41.
[48] Yao, L., G. Huang, H. Chen, and M.V. Barnhart, 2019. A modified smoothed finite element method (M-SFEM) for analyzing the band gap in phononic crystals. Acta Mechanica, 230, pp.2279-2293.
[49] Lucklum, F. and M.J. Vellekoop, 2018. Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice. Applied Physics Letters, 113(20), pp.201902.
[50] Chang, Z., Fundamentals of attosecond optics. 2016: CRC press, chap1, pp.1-46.