[1] Karbaschi, H., Lovén, J., Courteaut, K., Wacker, A. and Leijnse, M., 2016. Nonlinear thermoelectric efficiency of superlattice-structured nanowires. Physical review. B., 94(11).
[2] Karbaschi, H., Rashedi, G. and Nouri, N., 2019. Thermoelectric cooling properties of quantum dot superlattice embedded nanowires. Materials Research Express, 6(9), p.095071.
[3] Karbaschi, H. and Rashedi, G., 2019. Enhanced thermoelectric properties of graphene-based ferromagnetic-superconductor junctions, Andreev reflection effect. Materials Research Express, 6(6), p.065021.
[4] Nouri, N., Rashedi, G. and Karbaschi, H., 2020. Analysis of electronical properties of Bismuth and Silicene antidot in the presence of strain using the four-orbital tight-binding method. Physics Letters A, [online] 384(17), p.126364.
[5] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A., 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature, [online] 438(7065), pp.197–200.
[6] Geim, A.K. and Novoselov, K.S., 2007. The rise of graphene. Nature Materials, 6(3), pp.183–191.
[7] Katsnelson, M.I., 2007. Graphene: carbon in two dimensions. Materials Today, 10(1-2), pp.20–27.
[8] Aïssa, B., Memon, N.K., Ali, A. and Khraisheh, M.K., 2015. Recent Progress in the Growth and Applications of Graphene as a Smart Material: A Review. Frontiers in Materials, 2.
[9] Asim, N., Badiei, M., Samsudin, N.A., Mohammad, M., Razali, H., Soltani, S. and Amin, N., 2022. Application of graphene-based materials in developing sustainable infrastructure: An overview. Composites Part B: Engineering, 245, p.110188.
[10] Pang, J., Peng, S., Hou, C., Zhao, H., Fan, Y., Ye, C., Zhang, N., Wang, T., Cao, Y., Zhou, W., Sun, D., Wang, K., Rümmeli, M.H., Liu, H. and Cuniberti, G., 2023. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors.
[11] Zhou, S.Y., Gweon, G.-H. ., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.-H. ., Guinea, F., Castro Neto, A.H. and Lanzara, A. 2007. Substrate-induced bandgap opening in epitaxial graphene. Nature Materials, 6(10), pp.770–775.
[12] Cao, X., Shi, J., Zhang, M., Jiang, X., Zhong, H., Huang, P., Ding, Y. and Wu, M., 2016. Band Gap Opening of Graphene by Forming Heterojunctions with the 2D Carbonitrides Nitrogenated Holey Graphene, g-C3N4, and g-CN: Electric Field Effect. The Journal of Physical Chemistry C, 120(20), pp.11299–11305.
[13] Nandee, R., Chowdhury, M.A., Shahid, A., Hossain, N. and Rana, M., 2022. Band gap formation of 2D materialin graphene: Future prospect and challenges. Results in Engineering, 15, p.100474.
[14] Wang, B. and Song, C., 2022. Graphene bandgap opening by constructing superlattices with BN or MoO2 under pressure. Journal of Physics: Conference Series, 2331(1), pp.012001–012001.
[15] Semenoff, G.W., V. Semenoff and Zhou, F., 2008. Domain Walls in Gapped Graphene. Physical Review Letters, 101(8).
[16] Ajeel, F.N., Mohammed, M.H. and Khudhair, A.M., 2019. Energy bandgap engineering of graphene nanoribbon by doping phosphorous impurities to create nano-heterostructures: A DFT study. Physica E: Low-dimensional Systems and Nanostructures, 105, pp.105–115.
[17] Do, T.-N., Shih, P.-H., Gumbs, G. and Huang, D., 2021. Influence of electric and magnetic fields and σ-edge bands on the electronic and optical spectra of graphene nanoribbons. Physical review. B., 103(11).
[18] Zhao, T., Fan, Z.Q., Zhang, Z.H. and Zhou, R.L., 2019. Electronic structure, strain effects and transport property of armchair graphene nanoribbon with variously possible edge oxidation. Journal of Physics D: Applied Physics, 52(47), p.475301.
[19] Kalami, R. and Ketabi, S. A., 2022 The electronic properties of armchair graphene nanoribbons defected by different shapes of quantum antidots. Nanoscale 9(1), pp.68–77.
[20] Peres, R., M. A. N. Araújo and Bozi, D., 2004. Phase diagram and magnetic collective excitations of the Hubbard model for graphene sheets and layers. Physical review. B, Condensed matter and materials physics, 70(19).
[21] Peres, N.M.R., Guinea, F. and Castro Neto, A.H. 2005. Coulomb interactions and ferromagnetism in pure and doped graphene. Physical Review B, 72(17).
[22] C. W. J. Beenakker C. W. J., 2006. Specular Andreev Reflection in Graphene. Physical review letters, 97(6).
[23] Wang, Z., Tang, C., Sachs, R., Barlas, Y. and Shi, J. 2015. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect. Physical review letters, 114(1).
[24] Linder, J., Yokoyama, T., Huertas-Hernando, D. and Sudbø, A., 2008. Supercurrent switch in graphene Π junctions. Physical review letters, 100(18), p.187004.
[25] Halterman, K., Valls, O.T. and Alidoust, M., 2013. Spin-Controlled Superconductivity and Tunable Triplet Correlations in Graphene Nanostructures. Physical review letters, 111(4).
[26] Katsnelson, M.I., Novoselov, K.S. and Geim, A.K., 2006. Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2(9), pp.620–625.
[27] Peres, N.M.R., 2009. The transport properties of graphene. Journal of physics. Condensed matter, 21(32), pp.323201–323201.
[28] Beiranvand, R. and Hamzehpour, H., 2020. Switchable crossed spin conductance in a graphene-based junction: The role of spin-orbit coupling. Scientific Reports, 10(1).
[29] Pellegrino, F.M.D., Falci, G. and Paladino, E., 2022. Effect of dilute impurities on short graphene Josephson junctions. Communications Physics, [online] 5(1), pp.1–10.
[30] Bernazzani, L., Marchegiani, G., Giazotto, F., Roddaro, S. and Braggio, A., 2023. Bipolar Thermoelectricity in Bilayer-Graphene–Superconductor Tunnel Junctions. Physical review applied, 19(4).
[31] Zareyan, M., Mohammadpour, H. and Moghaddam, A.G., 2008. Andreev-Klein reflection in graphene ferromagnet-superconductor junctions. Physical Review B, 78(19).
[32] Katsnelson, M.I., 2006. Zitterbewegung, chirality, and minimal conductivity in graphene. The European Physical Journal B - Condensed Matter and Complex Systems, 51(2), 157 (2006).
[33] Tworzydło, J., Trauzettel, B., Titov, M., Rycerz, A. and Beenakker, C.W., 2006. Sub-Poissonian shot noise in graphene. Physical review letters, 96(24), p.246802.