Electronic and spintronic transport in gapped graphene-based FG/SG/FG junctions

Document Type : Original Article

Authors

1 Faculty of science, Mahallat Institute of Higher Education, Mahallat 37811-51958, Iran

2 Department of Physics, University of Isfahan, Isfahan 81746-73441, Iran

Abstract

This study delves into the transport properties of ferromagnetic-superconductor-ferromagnetic (FSF) junctions using graphene, where ferromagnetism and superconductivity are induced via proximity effect. The investigation focuses on the influence of ferromagnetic exchange energy and graphene energy bandgap. Fabricated on SiC and BN substrates, the graphene-based junctions treat charge carriers as massive relativistic particles. Utilizing a four-dimensional Dirac-Bogoliubov-de Gennes equation with tailored boundary conditions, the study calculates normal and Andreev reflection probabilities, alongside charge and spin conductances. Notably, oscillatory patterns in normal and Andreev reflection coefficients highlight the prevalence of Andreev reflection at lower energies, transitioning to normal reflection at higher energies. Conductivity trends with ferromagnetic exchange energy display a decline followed by an upturn beyond a critical point. The graphene energy bandgap notably influences Giant Magnetoresistance (GMR), with larger bandgaps yielding higher GMR magnitudes. These findings provide valuable insights into the intricate interplay among ferromagnetism, superconductivity, and graphene's electronic properties within FSF junctions. This understanding offers promising avenues for advancing graphene-based electronic and spintronic devices.

Keywords

Main Subjects


© 2024 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Karbaschi, H., Lovén, J., Courteaut, K., Wacker, A. and Leijnse, M., 2016. Nonlinear thermoelectric efficiency of superlattice-structured nanowires. Physical review. B., 94(11). ‌
[2] Karbaschi, H., Rashedi, G. and Nouri, N., 2019. Thermoelectric cooling properties of quantum dot superlattice embedded nanowires. Materials Research Express, 6(9), p.095071.
[3] Karbaschi, H. and Rashedi, G., 2019. Enhanced thermoelectric properties of graphene-based ferromagnetic-superconductor junctions, Andreev reflection effect. Materials Research Express, 6(6), p.065021.
[4] Nouri, N., Rashedi, G. and Karbaschi, H., 2020. Analysis of electronical properties of Bismuth and Silicene antidot in the presence of strain using the four-orbital tight-binding method. Physics Letters A, [online] 384(17), p.126364.
[5] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A., 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature, [online] 438(7065), pp.197–200.
[6] Geim, A.K. and Novoselov, K.S., 2007. The rise of graphene. Nature Materials, 6(3), pp.183–191.
[7] Katsnelson, M.I., 2007. Graphene: carbon in two dimensions. Materials Today, 10(1-2), pp.20–27.
[8] Aïssa, B., Memon, N.K., Ali, A. and Khraisheh, M.K., 2015. Recent Progress in the Growth and Applications of Graphene as a Smart Material: A Review. Frontiers in Materials, 2.
[9] Asim, N., Badiei, M., Samsudin, N.A., Mohammad, M., Razali, H., Soltani, S. and Amin, N., 2022. Application of graphene-based materials in developing sustainable infrastructure: An overview. Composites Part B: Engineering, 245, p.110188.
[10] Pang, J., Peng, S., Hou, C., Zhao, H., Fan, Y., Ye, C., Zhang, N., Wang, T., Cao, Y., Zhou, W., Sun, D., Wang, K., Rümmeli, M.H., Liu, H. and Cuniberti, G., 2023. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors.
[11] Zhou, S.Y., Gweon, G.-H. ., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.-H. ., Guinea, F., Castro Neto, A.H. and Lanzara, A. 2007. Substrate-induced bandgap opening in epitaxial graphene. Nature Materials, 6(10), pp.770–775.
[12] Cao, X., Shi, J., Zhang, M., Jiang, X., Zhong, H., Huang, P., Ding, Y. and Wu, M., 2016. Band Gap Opening of Graphene by Forming Heterojunctions with the 2D Carbonitrides Nitrogenated Holey Graphene, g-C3N4, and g-CN: Electric Field Effect. The Journal of Physical Chemistry C, 120(20), pp.11299–11305.
[13] Nandee, R., Chowdhury, M.A., Shahid, A., Hossain, N. and Rana, M., 2022. Band gap formation of 2D materialin graphene: Future prospect and challenges. Results in Engineering, 15, p.100474.
[14] Wang, B. and Song, C., 2022. Graphene bandgap opening by constructing superlattices with BN or MoOunder pressure. Journal of Physics: Conference Series, 2331(1), pp.012001–012001.
 [15] Semenoff, G.W., V. Semenoff and Zhou, F., 2008. Domain Walls in Gapped Graphene. Physical Review Letters, 101(8).
[16] Ajeel, F.N., Mohammed, M.H. and Khudhair, A.M., 2019. Energy bandgap engineering of graphene nanoribbon by doping phosphorous impurities to create nano-heterostructures: A DFT study. Physica E: Low-dimensional Systems and Nanostructures, 105, pp.105–115.
[17] Do, T.-N., Shih, P.-H., Gumbs, G. and Huang, D., 2021. Influence of electric and magnetic fields and σ-edge bands on the electronic and optical spectra of graphene nanoribbons. Physical review. B., 103(11).
[18] Zhao, T., Fan, Z.Q., Zhang, Z.H. and Zhou, R.L., 2019. Electronic structure, strain effects and transport property of armchair graphene nanoribbon with variously possible edge oxidation. Journal of Physics D: Applied Physics, 52(47), p.475301.
[19] Kalami, R. and Ketabi, S. A., 2022 The electronic properties of armchair graphene nanoribbons defected by different shapes of quantum antidots. Nanoscale 9(1), pp.68–77.
[20] Peres, R., M. A. N. Araújo and Bozi, D., 2004. Phase diagram and magnetic collective excitations of the Hubbard model for graphene sheets and layers. Physical review. B, Condensed matter and materials physics, 70(19).
[21] Peres, N.M.R., Guinea, F. and Castro Neto, A.H. 2005. Coulomb interactions and ferromagnetism in pure and doped graphene. Physical Review B, 72(17). 
[22] C. W. J. Beenakker C. W. J., 2006. Specular Andreev Reflection in Graphene. Physical review letters, 97(6).
[23] Wang, Z., Tang, C., Sachs, R., Barlas, Y. and Shi, J. 2015. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect. Physical review letters, 114(1).
[24] Linder, J., Yokoyama, T., Huertas-Hernando, D. and Sudbø, A., 2008. Supercurrent switch in graphene Π junctions. Physical review letters100(18), p.187004.
[25] Halterman, K., Valls, O.T. and Alidoust, M., 2013. Spin-Controlled Superconductivity and Tunable Triplet Correlations in Graphene Nanostructures. Physical review letters, 111(4).
[26] Katsnelson, M.I., Novoselov, K.S. and Geim, A.K., 2006. Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2(9), pp.620–625.
[27] Peres, N.M.R., 2009. The transport properties of graphene. Journal of physics. Condensed matter, 21(32), pp.323201–323201.
[28] Beiranvand, R. and Hamzehpour, H., 2020. Switchable crossed spin conductance in a graphene-based junction: The role of spin-orbit coupling. Scientific Reports, 10(1). 
[29] Pellegrino, F.M.D., Falci, G. and Paladino, E., 2022. Effect of dilute impurities on short graphene Josephson junctions. Communications Physics, [online] 5(1), pp.1–10.
[30] Bernazzani, L., Marchegiani, G., Giazotto, F., Roddaro, S. and Braggio, A., 2023. Bipolar Thermoelectricity in Bilayer-Graphene–Superconductor Tunnel Junctions. Physical review applied, 19(4).
[31] Zareyan, M., Mohammadpour, H. and Moghaddam, A.G., 2008. Andreev-Klein reflection in graphene ferromagnet-superconductor junctions. Physical Review B, 78(19).
[32] Katsnelson, M.I., 2006. Zitterbewegung, chirality, and minimal conductivity in graphene. The European Physical Journal B - Condensed Matter and Complex Systems, 51(2), 157 (2006).
[33] Tworzydło, J., Trauzettel, B., Titov, M., Rycerz, A. and Beenakker, C.W., 2006. Sub-Poissonian shot noise in graphene. Physical review letters96(24), p.246802.