The effect of energy band gap of channel transistor region on npn transistor performance; a numerical study

Document Type : Original Article

Authors

1 Hakim Sabzevari University, Sabzevar, 96179-76487, Iran

2 Department of Physics, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran

Abstract

The distance between conduction and valence bands which is known as bandgap energy is an important factor for semiconductors and is different in various materials. The bandgap energy determines the electrical and optical properties of semiconductors and has a direct effect on the performance of diodes and transistors. In this article, the effect of bandgap energy of the channel region of a npn transistor has been investigated and its effects on capacitance and conductivity, threshold voltage, and the Ion-Ioff ratio were studied. An npn transistor is designed and then the bandgap energy is changed between 0.8 eV and 2.2 eV with a step of 0.2 eV, and subthreshold slope and other electrical quantities have been obtained numerically. By comparing the results, the best performance of the transistor can be obtained. This simulation was done with Silvaco Atlas software. This study can open new windows in design of transistor devices.

Keywords

Main Subjects


© 2024 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Langmuir, I., 1919. The arrangement of electrons in atoms and molecules. Journal of the American Chemical Society41(6), 868-934.
[2] Burdett, J.K., 1984. From bonds to bands and molecules to solids. Progress in Solid State Chemistry15(3), 173-255.
[3] Allen, L. C., 1989. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. Journal of the American Chemical Society111(25), 9003-9014.
[4] Pauling, L., 1938. The nature of the interatomic forces in metals. Physical Review54(11), 899.
[5] Wallace, P.R., 1947. The band theory of graphite. Physical review71(9), 622.
[6] Brundle, C.R., 1974. The application of electron spectroscopy to surface studies. Journal of Vacuum Science and Technology11(1), 212-224.
[7] Li, Y., 2012. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of chemical research45(5), 723-733.
[8] Pantelides, S.T., Mickish, D.J. and Kunz, A.B., 1974. Correlation effects in energy-band theory. Physical Review B10(6), p.2602.
[9] Souza, I., Marzari, N. and Vanderbilt, D., 2001. Maximally localized Wannier functions for entangled energy bands. Physical Review B65(3), 035109.
[10] Singleton, J., 2001. Band theory and electronic properties of solids (Vol. 2). OUP Oxford.
[11] Razeghi, M., 2006. Fundamentals of solid-state engineering (p. 30). New York: Springer.
[12] Crawford, S.E., Shugayev, R.A., Paudel, H.P., Lu, P., Syamlal, M., Ohodnicki, P.R., Chorpening, B., Gentry, R. and Duan, Y., 2021. Quantum sensing for energy applications: Review and perspective. Advanced Quantum Technologies4(8), p.2100049.
[13] Koushki, E., Majles Ara, M. H. and Akherat Doost, H., 2014. Z-scan technique for saturable absorption using diffraction method in γ-alumina nanoparticles. Applied Physics B115, 279-284.
[14] Koushki, E., Farzaneh, A. and Ara, M.M., 2014. Modeling absorption spectrum and saturation intensity of ZnO nano-colloid. Optik125(1), 220-223.
[15] Ghasedi, A., Koushki, E., Zirak, M. and Alehdaghi, H., 2020. Improvement in structural, electrical, and optical properties of Al-doped ZnO nanolayers by sodium carbonate prepared via solgel method. Applied Physics A126(6), 474.
[16] Benalcazar, W.A., Li, T. and Hughes, T.L., 2019. Quantization of fractional corner charge in C n-symmetric higher-order topological crystalline insulators. Physical Review B99(24), 245151.
[17] Peighambardoust, N. S., Asl, S. K., Mohammadpour, R. and Asl, S. K., 2018. Band-gap narrowing and electrochemical properties in N-doped and reduced anodic TiO2 nanotube arrays. Electrochimica Acta270, 245-255.
[18] Mushtaq, N., Xia, C., Dong, W., Wang, B., Raza, R., Ali, A., Afzal, M. and Zhu, B., 2019. Tuning the energy band structure at interfaces of the SrFe0. 75Ti0. 25O3− δ–Sm0. 25Ce0. 75O2− δ heterostructure for fast ionic transport. ACS applied materials & interfaces11(42), pp.38737-38745.
[19] Doost, H. A., Ara, M.M. and Koushki, E., 2016. Synthesis and complete Mie analysis of different sizes of TiO2 nanoparticles. Optik127(4), 1946-1951.
[20] Koushki, E. and Mousavi, S. H., 2022. Periodic behavior of reflectance and transmittance from a thin film due to optical interference; The case of AlN nanostructure films. Surfaces and Interfaces30, 101821.
[21] Zhong, J.X., Wu, W.Q., Zhou, Y., Dong, Q., Wang, P., Ma, H., Wang, Z., Yao, C.Y., Chen, X., Liu, G.L. and Shi, Y., 2022. Room temperature fabrication of SnO2 electrodes enabling barrier‐free electron extraction for efficient flexible perovskite photovoltaics. Advanced Functional Materials32(26), p.2200817.
[22] Grubač, Z., Katić, J. and Metikoš-Huković, M., 2019. Energy-band structure as basis for semiconductor n-Bi2S3/n-Bi2O3 photocatalyst design. Journal of the Electrochemical Society166(10), H433.
[23] Darwesh, A. H., Aziz, S. B. and Hussen, S. A., 2022. Insights into optical band gap identification in polymer composite films based on PVA with enhanced optical properties: Structural and optical characteristics. Optical Materials133, 113007.
[24] Nayak, D.K., Woo, J.C.S., Park, J.S., Wang, K. and MacWilliams, K.P., 1991. Enhancement-mode quantum-well Ge/sub x/Si/sub 1-x/PMOS. IEEE Electron Device Letters12(4), pp.154-156.
[25] Yeo, Y.C., Subramanian, V., Kedzierski, J., Xuan, P., King, T.J., Bokor, J. and Hu, C., 2002. Design and fabrication of 50-nm thin-body p-MOSFETs with a SiGe heterostructure channel. IEEE Transactions on Electron Devices49(2), pp.279-286.
[26] Mizuno, T., Sugiyama, N., Tezuka, T., Moriyama, Y., Nakaharai, S., Maeda, T. and Takagi, S., 2004, June. High velocity electron injection MOSFETs for ballistic transistors using SiGe/strained-Si heterojunction source structures. In Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004. (pp. 202-203). IEEE.
[27] Kim, Y., Gebara, G., Freiler, M., Barnett, J., Riley, D., Chen, J., Torres, K., Lim, J., Foran, B., Shaapur, F. and Agarwal, A., 2001, December. Conventional n-channel MOSFET devices using single layer HfO/sub 2/and ZrO/sub 2/as high-k gate dielectrics with polysilicon gate electrode. In International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (pp. 20-2). IEEE.
[28] Kamali Moghaddam, M., Moslemi, M. and Farzaneh, M., 2020. Analytical Modeling of ZrO2, HfO2 and SiO2 Effect over Tunneling Field Effect Transistor. Journal of Electronic Materials49(2), 1467-1472.
[29] Moghaddam, M.K. and Hosseini, S.E., 2012. Design and optimization of a p+ n+ in+ tunnel FET. International Journal on Technical and Physical Problems of Engineering (IJTPE), (12), 95-99.
[30] Hosseini, S.E. and Moghaddam, M.K., 2015. Analytical modeling of a pnin tunneling field effect transistor. Materials Science in Semiconductor Processing30, 56-61.
[31] Moghaddam, M.K. and Hosseini, S.E., 2012. Design and optimization of a P+ N+ IN+ tunnel FET with Si channel and SiGe source. International Journal of Academic Research in Applied Science1(4), 67-68.
[32] Moghaddam, M.K. and Hosseini, S.E., 2012, September. INVESTIGATION OF A NOVEL P+ N+ IN+ TUNNEL FET. In 8th International Conference on Technical and Physical Problems of Power Engineering.
[33] Kamali Moghaddam, M., 2023. Simulation of the Effect of Gallium Arsenide/Aluminum Gallium Arsenide Multilayer Material Structure on LED Performance. Materials Chemistry Horizons2(4), 293-301.