[1] Langmuir, I., 1919. The arrangement of electrons in atoms and molecules. Journal of the American Chemical Society, 41(6), 868-934.
[2] Burdett, J.K., 1984. From bonds to bands and molecules to solids. Progress in Solid State Chemistry, 15(3), 173-255.
[3] Allen, L. C., 1989. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. Journal of the American Chemical Society, 111(25), 9003-9014.
[4] Pauling, L., 1938. The nature of the interatomic forces in metals. Physical Review, 54(11), 899.
[5] Wallace, P.R., 1947. The band theory of graphite. Physical review, 71(9), 622.
[6] Brundle, C.R., 1974. The application of electron spectroscopy to surface studies. Journal of Vacuum Science and Technology, 11(1), 212-224.
[7] Li, Y., 2012. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of chemical research, 45(5), 723-733.
[8] Pantelides, S.T., Mickish, D.J. and Kunz, A.B., 1974. Correlation effects in energy-band theory. Physical Review B, 10(6), p.2602.
[9] Souza, I., Marzari, N. and Vanderbilt, D., 2001. Maximally localized Wannier functions for entangled energy bands. Physical Review B, 65(3), 035109.
[10] Singleton, J., 2001. Band theory and electronic properties of solids (Vol. 2). OUP Oxford.
[11] Razeghi, M., 2006. Fundamentals of solid-state engineering (p. 30). New York: Springer.
[12] Crawford, S.E., Shugayev, R.A., Paudel, H.P., Lu, P., Syamlal, M., Ohodnicki, P.R., Chorpening, B., Gentry, R. and Duan, Y., 2021. Quantum sensing for energy applications: Review and perspective. Advanced Quantum Technologies, 4(8), p.2100049.
[13] Koushki, E., Majles Ara, M. H. and Akherat Doost, H., 2014. Z-scan technique for saturable absorption using diffraction method in γ-alumina nanoparticles. Applied Physics B, 115, 279-284.
[14] Koushki, E., Farzaneh, A. and Ara, M.M., 2014. Modeling absorption spectrum and saturation intensity of ZnO nano-colloid. Optik, 125(1), 220-223.
[15] Ghasedi, A., Koushki, E., Zirak, M. and Alehdaghi, H., 2020. Improvement in structural, electrical, and optical properties of Al-doped ZnO nanolayers by sodium carbonate prepared via solgel method. Applied Physics A, 126(6), 474.
[16] Benalcazar, W.A., Li, T. and Hughes, T.L., 2019. Quantization of fractional corner charge in C n-symmetric higher-order topological crystalline insulators. Physical Review B, 99(24), 245151.
[17] Peighambardoust, N. S., Asl, S. K., Mohammadpour, R. and Asl, S. K., 2018. Band-gap narrowing and electrochemical properties in N-doped and reduced anodic TiO2 nanotube arrays. Electrochimica Acta, 270, 245-255.
[18] Mushtaq, N., Xia, C., Dong, W., Wang, B., Raza, R., Ali, A., Afzal, M. and Zhu, B., 2019. Tuning the energy band structure at interfaces of the SrFe0. 75Ti0. 25O3− δ–Sm0. 25Ce0. 75O2− δ heterostructure for fast ionic transport. ACS applied materials & interfaces, 11(42), pp.38737-38745.
[19] Doost, H. A., Ara, M.M. and Koushki, E., 2016. Synthesis and complete Mie analysis of different sizes of TiO2 nanoparticles. Optik, 127(4), 1946-1951.
[20] Koushki, E. and Mousavi, S. H., 2022. Periodic behavior of reflectance and transmittance from a thin film due to optical interference; The case of AlN nanostructure films. Surfaces and Interfaces, 30, 101821.
[21] Zhong, J.X., Wu, W.Q., Zhou, Y., Dong, Q., Wang, P., Ma, H., Wang, Z., Yao, C.Y., Chen, X., Liu, G.L. and Shi, Y., 2022. Room temperature fabrication of SnO2 electrodes enabling barrier‐free electron extraction for efficient flexible perovskite photovoltaics. Advanced Functional Materials, 32(26), p.2200817.
[22] Grubač, Z., Katić, J. and Metikoš-Huković, M., 2019. Energy-band structure as basis for semiconductor n-Bi2S3/n-Bi2O3 photocatalyst design. Journal of the Electrochemical Society, 166(10), H433.
[23] Darwesh, A. H., Aziz, S. B. and Hussen, S. A., 2022. Insights into optical band gap identification in polymer composite films based on PVA with enhanced optical properties: Structural and optical characteristics. Optical Materials, 133, 113007.
[24] Nayak, D.K., Woo, J.C.S., Park, J.S., Wang, K. and MacWilliams, K.P., 1991. Enhancement-mode quantum-well Ge/sub x/Si/sub 1-x/PMOS. IEEE Electron Device Letters, 12(4), pp.154-156.
[25] Yeo, Y.C., Subramanian, V., Kedzierski, J., Xuan, P., King, T.J., Bokor, J. and Hu, C., 2002. Design and fabrication of 50-nm thin-body p-MOSFETs with a SiGe heterostructure channel. IEEE Transactions on Electron Devices, 49(2), pp.279-286.
[26] Mizuno, T., Sugiyama, N., Tezuka, T., Moriyama, Y., Nakaharai, S., Maeda, T. and Takagi, S., 2004, June. High velocity electron injection MOSFETs for ballistic transistors using SiGe/strained-Si heterojunction source structures. In Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004. (pp. 202-203). IEEE.
[27] Kim, Y., Gebara, G., Freiler, M., Barnett, J., Riley, D., Chen, J., Torres, K., Lim, J., Foran, B., Shaapur, F. and Agarwal, A., 2001, December. Conventional n-channel MOSFET devices using single layer HfO/sub 2/and ZrO/sub 2/as high-k gate dielectrics with polysilicon gate electrode. In International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (pp. 20-2). IEEE.
[28] Kamali Moghaddam, M., Moslemi, M. and Farzaneh, M., 2020. Analytical Modeling of ZrO2, HfO2 and SiO2 Effect over Tunneling Field Effect Transistor. Journal of Electronic Materials, 49(2), 1467-1472.
[29] Moghaddam, M.K. and Hosseini, S.E., 2012. Design and optimization of a p+ n+ in+ tunnel FET. International Journal on Technical and Physical Problems of Engineering (IJTPE), (12), 95-99.
[30] Hosseini, S.E. and Moghaddam, M.K., 2015. Analytical modeling of a pnin tunneling field effect transistor. Materials Science in Semiconductor Processing, 30, 56-61.
[31] Moghaddam, M.K. and Hosseini, S.E., 2012. Design and optimization of a P+ N+ IN+ tunnel FET with Si channel and SiGe source. International Journal of Academic Research in Applied Science, 1(4), 67-68.
[32] Moghaddam, M.K. and Hosseini, S.E., 2012, September. INVESTIGATION OF A NOVEL P+ N+ IN+ TUNNEL FET. In 8th International Conference on Technical and Physical Problems of Power Engineering.
[33] Kamali Moghaddam, M., 2023. Simulation of the Effect of Gallium Arsenide/Aluminum Gallium Arsenide Multilayer Material Structure on LED Performance. Materials Chemistry Horizons, 2(4), 293-301.