Effect of Sintering Temperature on Phase Characteristic and Grain Size of La0.7AE0.3MnO3 (AE=Ba/Ca/Sr) Ceramics Prepared by Sol-Gel Method

Document Type : Original Article

Authors

1 Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, West Java Indonesia

2 Department of Physics, Faculty Sciences and Technology, State Islamic University Syarif Hidayatullah Jakarta, South Tangerang 15412, Banten Indonesia

Abstract

We investigate the impact of sintering temperature on changes in phase characteristics and grain size in the La0.7AE0.3MnO3 (AE=Ba/Ca/Sr) materials synthesized by the sol-gel method. The materials were sintered at different sintering temperatures of 700°C, 800°C, 900°C, and 1200°C. The refinement of the X-ray Diffraction (XRD) pattern revealed that the La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3 materials exhibited a single phase across all sintering temperatures. For La0.7Ba0.3MnO3, a single-phase structure was observed only at sintering temperature above 800°C. All materials showed an increase in peak intensity and a shift in peak in the range angle 31°-34° towards higher angles correlated to increased sintering temperature. Sintering temperature plays an important role in controlling the grain size. Images obtained by Scanning Electron Microscope (SEM) showed the morphology of La0.7Sr0.3MnO3 sintered at different temperatures (700°C, 800°C, and 900°C). The morphology results show an increment in the average grain size with range of 41.05 – 69.27nm because of the grain growth as the sintering temperature.

Keywords

Main Subjects


© 2024 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Hizi, W., Rahmouni, H., Gorji, N.E., Guesmi, A., Ben Hamadi, N., Khezami, L., Dhahri, E., Khirouni, K. and Gassoumi, M., 2022. Impact of sintering temperature on the electrical properties of La0.9Sr0.1MnO3 manganite. Catalysts12(3), p.340.
[2] Rina, K., Muzakkiy, P.M.A., Engkir, S., Herry, M. and Iwan, S., 2021, November. Neutron diffraction study on nuclear and magnetic structure of (1-x) La0.8Ba0.2MnO3/(x)Bi0.5Na0.5TiO3 composite. In AIP Conference Proceedings (Vol. 2381, No. 1). AIP Publishing.
[3] Kekade, S.S., Yadav, P.A., Thombare, B.R., Dusane, P.R., Phase, D.M., Choudhari, R.J. and Patil, S.I., 2019. Effect of sintering temperature on electronic properties of nanocrystalline La0.7Sr0.3MnO3Materials Research Express6(9), p.096108.
[4] Li, S.B., Wang, C.B., Liu, H.X., Li, L., Shen, Q., Hu, M.Z. and Zhang, L.M., 2018. Effect of sintering temperature on structural, magnetic and electrical transport properties of La0.67Ca0.33MnO3 ceramics prepared by Plasma Activated Sintering. Materials Research Bulletin99, pp.73-78.
[5] Li, J., Wang, H., Liang, Z., Li, Y., Chen, Q., Zhang, H. and Li, Y., 2022. Improvement of electrical and magnetic properties in La0.67Ca0.33Mn0.97Co0.03O3 ceramic by Ag doping. Ceramics International48(24), pp.36888-36899.
[6] Hwang, H.Y., Cheong, S.W., Radaelli, P.G., Marezio, M. and Batlogg, B., 1995. Lattice Effects on the Magnetoresistance in Doped LaMnO3Physical review letters75(5), p.914.
[7] Pan, K.Y., Shaari, A.H., Chen, S.K., Pah, L.K., Navasery, M. and Kechik, M.M.A., 2015. Effect of Sintering Temperature on Structural, Electrical and Magnetic Properties of La0.7Sr0.3MnO3Advanced Materials Research1107, pp.283-288.
[8] Mu, Z., Wei, G., Zhang, H., Gao, L., Zhao, Y., Tang, S. and Ji, G., 2022. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Research15(8), pp.7731-7741.
[9] Urquizo, I.F., Correa, H.S., de Oca Ayala, F.M., de la Rosa, J.R. and García, T.H., 2020. Synthesis of La–Sr–Mn–O and La–Sr–Ca–Mn–O perovskites through solution combustion using urea at fuel deficient conditions. IEEE Transactions on NanoBioscience19(2), pp.183-191.
[10] Kharrat, N., Chihaoui, S., Cheikhrouhou-Koubaa, W., Koubaa, M. and Cheikhrouhou, A., 2018. Structural, magnetic and magnetocaloric investigation of La 0.67 Ba0.33Mn1−xNixO3 (x= 0,0.025 and 0.075) manganite. Journal of Materials Science: Materials in Electronics29, pp.17187-17194.
[11]      Lee, S., Kim, M., Lee, K.T., Irvine, J.T. and Shin, T.H., 2021. CO2 Electrolysis Cells: Enhancing Electrochemical CO2 Reduction using Ce (Mn, Fe) O2 with La(Sr)Cr(Mn)O3 Cathode for High‐Temperature Solid Oxide Electrolysis Cells (Adv. Energy Mater. 24/2021). Advanced Energy Materials11(24), p.2170089.
[12] Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z. and Wei, L., 2021. A-site defects in LaSrMnO3 perovskite-based catalyst promoting NOx storage and reduction for lean-burn exhausts.
[13] Jayakumar, G., Poomagal, D.S., Albert Irudayaraj, A., Dhayal Raj, A., Kethrin Thresa, S. and Akshadha, P., 2020. Study on structural, magnetic and electrical properties of perovskite lanthanum strontium manganite nanoparticles. Journal of Materials Science: Materials in Electronics31(23), pp.20945-20953.
[14] Rajan, S., Kumar, A.K. and Isac, J., 2021. Colossal magnetoresistance of Nd-doped LaCaMnO3 polycrystalline ceramics. Processing and Application of Ceramics15(1), pp.95-99.
[15] Felhi, H., Brahem, R.A., Smari, M., Skini, R., Alamri, M.A., Selmi, M. and Dhahri, E., 2024. The Impact of Involving Silver into LaCaMnO3 Perovskite on the Magnetocaloric Effect and Electrical Behavior. Journal of Low Temperature Physics214(5), pp.281-293.
[16] Rajan, S. and Isac, J., 2021, July. A study on magnetic and spin polarized electric transport properties of cation doped LaCaMnO3perovskite ceramic system. In IOP Conference Series: Materials Science and Engineering (Vol. 1166, No. 1, p. 012005). IOP Publishing.
[17] Esmaeili, S., Ehsani, M.H. and Fazli, M., 2020. Photo-catalytic activities of La0.7Ba0.3MnO3 nanoparticles. Optik216, p.164812.
[18] Chand, U., Yadav, K., Gaur, A. and Varma, G.D., 2010. Effect of different synthesis techniques on structural, magnetic and magneto-transport properties of Pr0.7Sr0.3MnO3 manganite. Journal of Rare Earths28(5), pp.760-764.
[19] Navas, D., Fuentes, S., Castro-Alvarez, A. and Chavez-Angel, E., 2021. Review on sol-gel synthesis of perovskite and oxide nanomaterials. Gels7(4), p.275.
[20] Tokkaya, A., Çetin, S.K., Altan, B., Coşkun, A., Taşarkuyu, E. and Ekicibil, A., 2022. Effect of Sintering Time on the Crystallisation, Morphology, Structure, Electric, Magnetic and Magnetocaloric Properties of La0.80Ag0.20MnO3Journal of Superconductivity and Novel Magnetism, pp.1-12.
[21] Baaziz, H., Tozri, A., Dhahri, E. and Hlil, E.K., 2018. Influence of grain size and sintering temperature grain size on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.67Sr0.33MnO3 nanoparticles. Journal of Magnetism and Magnetic Materials449, pp.207-213.
[22] Kurniawan, B., Rosanti, S.D., Kamila, R., Sahara, N.B., Razaq, D.S., Komala, T. and Munazat, D.R., 2018, May. Effect of Temperature and Duration of Sintering on Perovskite Material (La1-xAgx)0.8Ca0.2MnO3. In IOP Conference Series: Materials Science and Engineering (Vol. 367, No. 1, p. 012055). IOP Publishing.
[23] Ding, S., Li, Y., Guo, J., Wu, D., Wang, S., Deng, X., Xie, Y., Chen, Q. and Zhang, H., Effect of Sm3+ Doping on Tcr and Mr Properties of La0.7ca0.3mno3 Ceramics. Available at SSRN 4820631.
[24] Razaq, D.S. and Kurniawan, B., 2019, March. Preparation and crystal structure of La0.7Ba0.1Sr0.2Mn0.9Cu0.1O3 perovskite: a comparison between sol-gel and solid state process. In Journal of Physics: Conference Series (Vol. 1170, No. 1, p. 012050). IOP Publishing.
[25] Mesrar, M., Lamcharfi, T., Echatoui, N.S. and Abdi, F., 2022. Effect of sintering temperature on the microstructure and electrical properties of (Na0.5Bi0.5) TiO3 processed by the sol-gel method. Journal of Sol-Gel Science and Technology103(3), pp.820-831.
[26] Khoshnood, R.S. and Khoshnoud, D.S., 2019. Structural, magnetic, and photocatalytic properties in Bi0.83−x La0.17YxFeO3 nanoparticles. Applied Physics A125(11), p.750.
[27] Kumar, D., Singh, M. and Singh, A.K., 2018, May. Crystallite size effect on lattice strain and crystal structure of Ba1/4Sr3/4MnO3 layered perovskite manganite. In AIP Conference Proceedings (Vol. 1953, No. 1). AIP Publishing.
[28] Kour, R., Arya, S., Verma, S., Gupta, J., Bandhoria, P., Bharti, V., Datt, R. and Gupta, V., 2019. Potential substitutes for replacement of lead in perovskite solar cells: a review. Global Challenges3(11), p.1900050.
[29] Silva‐Ramírez, E.L., Cumbrera‐Conde, I., Cano‐Crespo, R. and Cumbrera, F.L., 2023. Machine learning techniques for the ab initio Bravais lattice determination. Expert Systems40(2), p.e13160.
[30] Simons, H., Daniels, J., Jo, W., Dittmer, R., Studer, A., Avdeev, M., Rödel, J. and Hoffman, M., 2011. Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3–6%BaTiO3Applied Physics Letters98(8).
[31] Denisenko, Y.G., Molokeev, M.S., Oreshonkov, A.S., Krylov, A.S., Aleksandrovsky, A.S., Azarapin, N.O., Andreev, O.V., Razumkova, I.A. and Atuchin, V.V., 2021. Crystal structure, vibrational, spectroscopic and thermochemical properties of double sulfate crystalline hydrate [CsEu(H2O)3(SO4)2]·H2O and its thermal dehydration product CsEu(SO4)2Crystals11(9), p.1027.
[32] Kim, S.J., Demazeau, G., Alonso, J.A. and Choy, J.H., 2001. High pressure synthesis and crystal structure of a new Ni (III) perovskite: TlNiO3Journal of Materials Chemistry11(2), pp.487-492.
[33] Yadav, P.A., Deshmukh, A.V., Adhi, K.P., Kale, B.B., Basavaih, N. and Patil, S.I., 2013. Role of grain size on the magnetic properties of La0.7Sr0.3MnO3Journal of magnetism and magnetic materials328, pp.86-90.
[34] Mohamed, F.A., 2019. Correlation between the minimum grain size obtainable by ball milling and lattice strain. Materials Science and Engineering: A752, pp.15-17.
[35] Ng, S.W., Lim, K.P., Halim, S.A. and Jumiah, H., 2018. Grain size effect on the electrical and magneto-transport properties of nanosized Pr0.67Sr0.33MnO3Results in Physics9, pp.1192-1200.
[36] Bhattacharyya, R., Das, S., Das, A. and Omar, S., 2021. Effect of sintering temperature on the microstructure and conductivity of Na0.54Bi0.46Ti0. 99Mg0.01O3-δSolid State Ionics360, p.115547.
[37] Kurniawan, B., 2024. Identifikasi Fasa dan Informasi Kristal Nanopartikel Oksida Spinel CuCr2O4 Memanfaatkan Analisis XRD Berbasis Metode Rietveld Refinement. JIIF (Jurnal Ilmu dan Inovasi Fisika)8(1), pp.9-16.
[38] Lee, J., Jeong, J., Lee, H., Park, J., Jang, J. and Jeong, H., 2023. Effects of Sintering Processes on Microstructure Evolution, Crystallite, and Grain Growth of MoO2 Powder. Crystals13(9), p.1311.