[1] Shenderova, O.A. and McGuire, G., 2006. Types of nanocrystalline diamond. In Ultrananocrystalline diamond (pp. 79-114). William Andrew Publishing.
[2] De, S., Heaney, P.J., Fei, Y. and Vicenzi, E.P., 2004. Microstructural study of synthetic sintered diamond and comparison with carbonado, a natural polycrystalline diamond. American Mineralogist, 89(2-3), pp.438-446.
[3] Field, J.E., 2012. The mechanical and strength properties of diamond. Reports on Progress in Physics, 75(12), p.126505.
[4] Hansen, N., Huang, X. and Winther, G., 2011. Effect of grain boundaries and grain orientation on structure and properties. Metallurgical and Materials Transactions A, 42, pp.613-625.
[5] Van Der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G.H., Heinz, T.F., Reichman, D.R., Muller, D.A. and Hone, J.C., 2013. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature materials, 12(6), pp.554-561.
[6] Li, G., Rahim, M.Z., Pan, W., Wen, C. and Ding, S., 2020. The manufacturing and the application of polycrystalline diamond tools–A comprehensive review. Journal of Manufacturing Processes, 56, pp.400-416.
[7] Zhang, J., Wang, J., Zhang, G., Huo, Z., Huang, Z. and Wu, L., 2023. A review of diamond synthesis, modification technology, and cutting tool application in ultra-precision machining. Materials & Design, p.112577.
[8] Schacht, T., Untermann, N. and Steck, E., 2003. The influence of crystallographic orientation on the deformation behaviour of single crystals containing microvoids. International Journal of Plasticity, 19(10), pp.1605-1626.
[9] Asim, U., Siddiq, M.A. and Demiral, M., 2017. Void growth in high strength aluminium alloy single crystals: a CPFEM based study. Modelling and Simulation in Materials Science and Engineering, 25(3), p.035010.
[10] Liu, L.Y., Yang, Q.S. and Zhang, Y.X., 2019. Plastic damage of additive manufactured aluminium with void defects. Mechanics Research Communications, 95, pp.45-51.
[11] Si, L.Y., 2009. Simulation of the texture evolution during cold deformation of FCC metal with crystal plasticity FEM. Northeastern University, China.
[12] Wilhelm, M., 1981. The cyclic stress-strain behaviour of age-hardened Cu Co and Al Zn Mg alloy single crystals. Materials Science and Engineering, 48(1), pp.91-106.
[13] Horibe, S., Lee, J.K. and Laird, C., 1984. CYCLIC DEFORMATION OF A1‐4% Cu ALLOY POLYCRYSTALS CONTAINING θ ″PRECIPITATES: GRAIN SIZE DEPENDENCE AND CORRELATION WITH MONOCRYSTALLINE CYCLIC DEFORMATION. Fatigue & Fracture of Engineering Materials & Structures, 7(2), pp.145-154.
[14] Van Gunsteren, W.F. and Berendsen, H.J., 1990. Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angewandte Chemie International Edition in English, 29(9), pp.992-1023.
[15] Zhu, H.P., Zhou, Z.Y., Yang, R.Y. and Yu, A.B., 2007. Discrete particle simulation of particulate systems: theoretical developments. Chemical engineering science, 62(13), pp.3378-3396.
[16] Rapaport, D.C., 2004. The art of molecular dynamics simulation. Cambridge university press.
[17] Rapaport, D.C., 2004. The art of molecular dynamics simulation. Cambridge university press.
[18] Nordholm, S. and Bacskay, G.B., 2020. The basics of covalent bonding in terms of energy and dynamics. Molecules, 25(11), p.2667.
[19] Jiao, L., Zhu, J., Zhang, Y., Yang, W., Zhou, S., Li, A., Xie, C., Zheng, X., Zhou, W., Yu, S.H. and Jiang, H.L., 2021. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. Journal of the American Chemical Society, 143(46), pp.19417-19424.
[20] Tersoff, J., 1988. New empirical approach for the structure and energy of covalent systems. Physical review B, 37(12), p.6991.
[21] Jiang, Y., Dehghan, S., Karimipour, A., Toghraie, D., Li, Z. and Tlili, I., 2020. Effect of copper nanoparticles on thermal behavior of water flow in a zig-zag nanochannel using molecular dynamics simulation. International Communications in Heat and Mass Transfer, 116, p.104652.
[22] Jin, K., Tai, Y., Toghraie, D. and Hekmatifar, M., 2022. The effects of nanoparticle percentages and an external variable magnetic field on the atomic and thermal behaviors in an oscillating heat pipe via molecular dynamics simulation. Journal of Molecular Liquids, 360, p.119570.
[23] Liu, X., Patra, I., Kuzichkin, O.R., Zaidi, M., Abdulnabi, S.M., Najm, Z.M., Altimari, U.S., Hadrawi, S.K., Andani, M.T. and Hekmatifar, M., 2022. Molecular dynamics study of the effect of external electric field amplitude and cavity on thermal properties of Ammonia/Copper Nano-Refrigerant. Journal of Molecular Liquids, 365, p.120125.
[24] Hirai, H., Terauchi, M., Tanaka, M. and Kondo, K., 1999. Band gap of essentially fourfold-coordinated amorphous diamond synthesized from C 60 fullerene. Physical review B, 60(9), p.6357.
[25] Wei, Q., Zhang, Q., Yan, H. and Zhang, M., 2017. A new superhard carbon allotrope: Tetragonal C 64. Journal of Materials Science, 52, pp.2385-2391.
[26] Xu, X., Xiong, C., Mao, S. and Yao, W., 2022. Established Model on Polycrystalline Graphene Oxide and Analysis of Mechanical Characteristic. Crystals, 12(3), p.382.