A Comprehensive Study of Gamma-rays Shielding Features of Binary Compounds

Document Type : Original Article

Authors

Department t of Physics, Imam Hossein Comprehensive University, Tehran, Iran

Abstract

In this research, using Geant4 Monte Carlo simulation tool, we have investigated the shielding properties of aluminum oxide, magnesium fluoride, aluminum fluoride, titanium dioxide, magnesium diboride, magnesium silicide, calcium disilicate, and Fluental in the energy range of 0.015 to 10 𝑀𝑒𝑉. In this review, we have calculated and analyzed the linear attenuation coefficient (LAC) and mass attenuation coefficients (MAC), half-value layer (HVL), tenth value layer (TVL), mean free path (MFP), and effective atomic number, effective electron density, equivalent atomic number and buildup factor. In the continuation of the work, we have compared the calculated results of mass attenuation coefficient by Geant4 Monte Carlo simulation tool with the experimental results of others and with the simulation data by XMuDat code, and they have a very low relative error and are in good agreement with each other. Finally, the results obtained for the selected materials are shown in appropriate figures.

Keywords

Main Subjects


© 2024 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Chen, Q., Naseer, K.A., Marimuthu, K., Kumar, P.S., Miao, B., Mahmoud, K.A. and Sayyed, M.I., 2021. Influence of modifier oxide on the structural and radiation shielding features of Sm 3+-doped calcium telluro-fluoroborate glass systems. Journal of the Australian Ceramic Society57, pp.275-286.
[2] Cao, D., Yang, G., Bourham, M. and Moneghan, D., 2020. Gamma radiation shielding properties of poly (methyl methacrylate)/Bi2O3 composites. Nuclear Engineering and Technology52(11), pp.2613-2619.
[3] AbuAlRoos, N.J., Azman, M.N., Amin, N.A.B. and Zainon, R., 2020. Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica78, pp.48-57.
[4] AbuAlRoos, N.J., Amin, N.A.B. and Zainon, R., 2019. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry165, p.108439.
[5] Soylu, H.M., Yurt Lambrecht, F. and Ersöz, O.A., 2015. Gamma radiation shielding efficiency of a new lead-free composite material. Journal of Radioanalytical and Nuclear Chemistry305, pp.529-534.
[6] Eshghi, M., 2020. Investigation of radiation protection features of the TeO2–B2O3–Bi2O3–Na2O–NdCl3 glass systems. Journal of Materials Science: Materials in Electronics31(19), pp.16479-16497.
[7] Li, J., Huang, M., Hou, R. and Ouyang, X., 2019. Photon attenuation coefficients of oxide dispersion strengthened steels by Geant4, XCOM and experimental data. Radiation Physics and Chemistry161, pp.23-28.
[8] Çağlar, M., Kayacık, H., Karabul, Y., Kılıç, M., Özdemir, Z.G. and İçelli, O., 2019. Na2Si3O7/BaO composites for the gamma-ray shielding in medical applications: Experimental, MCNP5, and WinXCom studies. Progress in Nuclear Energy117, p.103119.
[9] Ahmed, B., Shah, G.B., Malik, A.H. and Rizwan, M., 2020. Gamma-ray shielding characteristics of flexible silicone tungsten composites. Applied Radiation and Isotopes155, p.108901.
[10] Canel, A., Korkut, H. and Korkut, T., 2019. Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials. Radiation Physics and Chemistry158, pp.13-16.
[11] Mahmoud, K.M. and Rammah, Y.S., 2020. Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code, Physica B: Condensed Matter, 577, p. 411756.
[12] Nambiar, S. and Yeow, J.T.W., 2012. Polymer-Composite materials for radiation protection, ACS Applied Materials & Interfaces, 4(11), pp. 5717–5726.
[13] Singh, V.P. and Badiger, N.M., 2015. Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons, Glass Physics and Chemistry, 41(3), pp. 276–283.
[14] Poltabtim, W., Wimolmala, E. and Saenboonruang, K., 2018. Properties of lead-free gamma-ray shielding materials from metal oxide/EPDM rubber composites, Radiation Physics and Chemistry, 153, pp. 1–9.
[15] Sayyed, M.I., Al-Ghamdi, H., Almuqrin, A.H., Yasmin, S. and Elsafi, M., 2022. A study on the gamma radiation protection effectiveness of nano/micro-MgO-reinforced novel silicon rubber for medical applications. Polymers14(14), p.2867.
[16] Al‐Hadeethi, Y., Sayyed, M.I. and Rammah, Y.S., 2020. Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses, Ceramics International, 46(2), pp. 2055–2062.
[17] Singh, V.P., Badiger, N.M., Chanthima, N. and Kaewkhao, J., 2014. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiation Physics and Chemistry98, pp.14-21.
[18] Kumar, A., Jain, A., Sayyed, M.I., Laariedh, F., Mahmoud, K.A., Nebhen, J., Khandaker, M.U. and Faruque, M.R.I., 2021. Tailoring bismuth borate glasses by incorporating PbO/GeO2 for protection against nuclear radiation. Scientific reports11(1), p.7784.
[19] Aigueperse, J., Mollard, P., Devilliers, D., Chemla, M., Faron, R., Romano, R. and Cuer, J.P., 2000. Fluorine compounds, inorganic. Ullmann's encyclopedia of industrial chemistry.
[20] Greenwood, N.N. and Earnshaw, A., 2012. Chemistry of the elements. Elsevier.
[21] Dreveton, A., 2012. Manufacture of Aluminium Fluoride of High Density and Anhydrous Hydrofluoric Acid from Fluosilicic Acid, Procedia Engineering, 46, pp. 255–265.
[22] Hu, X.W., Lin, L.I., Gao, B.L., Shi, Z.N., Huan, L.I., Liu, J.J. and Wang, Z.W., 2011. Thermal decomposition of ammonium hexafluoroaluminate and preparation of aluminum fluoride. Transactions of Nonferrous Metals Society of China21(9), pp.2087-2092.
[23] AZoM, 2023. Alumina (Aluminium oxide) - the different types of commercially available grades. https://www.azom.com/article.aspx?ArticleID=1389.
[24] Nurdin, M., Maulidiyah, W.A., Abdillah, N. and Wibowo, D., 2016. Development of extraction method and characterization of TiO2 mineral from ilmenite. Int. J. ChemTech Res9(4), pp.483-491.
[25] Zahrani, M.M., 2012. Comments on “Microstructural and mechanical behavior of Mg/Mg2Si composite fabricated by a directional solidification system” by Mirshahi et al. [Mater. Sci. Eng. A 528 (2011) 8319–8323], Materials Science and Engineering: A, 544, pp. 80–82.
[26] Pešić, J., Popov, I., Šolajić, A., Damljanović, V., Hingerl, K., Belić, M. and Gajić, R., 2019. Ab initio study of the electronic, vibrational, and mechanical properties of the magnesium diboride monolayer. Condensed Matter4(2), p.37.
[27] Meng, X., Sasaki, K., Sano, K., Yuan, P. and Tatsuoka, H., 2017. Synthesis of crystalline Si-based nanosheets by extraction of Ca from CaSi2 in inositol hexakisphosphate solution. Japanese Journal of Applied Physics56(5S1), p.05DE02.
[28] Carroll, L. and Enger, S.A., 2023. M-TAG: A modular teaching-aid for Geant4, Heliyon (Londen), 9(10), p. e20229.
[29] Eshghi, M. and Alipoor, M.R., 2024.  Nickel/multiwalled Carbon Nanotube Composites as Gamma-ray Shielding. NANO.
[30] Alipoor, M.R, Eshghi, M., 2023. Evaluation of carbon-platinum nanotubes in the performance of gamma ray shields. Nano World, 19(72), p.  1-9.
[31] Allison, J., Amako, K., Apostolakis, J.E.A., Araujo, H.A.A.H., Dubois, P.A., Asai, M.A.A.M., Barrand, G.A.B.G., Capra, R.A.C.R., Chauvie, S.A.C.S., Chytracek, R.A.C.R. and Cirrone, G.A.P., 2006. Geant4 developments and applications. IEEE Transactions on nuclear science53(1), pp.270-278.
[32] Pronyaev, V.G., 1998. XMuDat: Photon attenuation data on PC. Version 1.0.1 of August 1998. Summary documentation. https://inis.iaea.org/search/search.aspx?orig_q=RN:30022813.
[33] Albqoor, A., Ababneh, E., Okoor, S. and Zahran, I., 2023. Validation of electromagnetic physics models and electron range in Geant4 Brachytherapy application. Nuclear Engineering and Technology55(1), pp.229-237.
[34] Jackson, D.F. and Hawkes, D., 1981. X-ray attenuation coefficients of elements and mixtures, Physics Reports, 70(3), pp. 169–233.
[35] Abdikhoshimovich, K.J., Olimdjanovich, A.O., Pilania, H. and Kawale, K.V., 2024. Applications of Physics in Diagnostic Imaging. European Journal of Medical Genetics and Clinical Biology, 1(1), pp.98-107.
[36] Apte, K. and Bhide, S., 2024. Basics of radiation, in Elsevier eBooks, pp. 1–23.
[37] Cevik, U.Ğ.U.R., Bacaksiz, E.M.İ.N., Damla, N. and Çelik, A.K.I.N., 2008. Effective atomic numbers and electron densities for CdSe and CdTe semiconductors. Radiation measurements43(8), pp.1437-1442.
[38] Singh, V.P. and Badiger, N.M., 2014. Gamma ray and neutron shielding properties of some alloy materials, Annals of Nuclear Energy, 64, pp. 301–310.
[39] Kavaz, E., Tekin, H.O., Kilic, G.Ö.K.H.A.N. and Susoy, G., 2020. Newly developed Zinc-Tellurite glass system: an experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. Journal of Non-Crystalline Solids544, p.120169.
[40] Singh, V.P. and Badiger, N.M., 2015. Studies on photon buildup for some thermoluminescent dosimetric compounds, Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science, 90(3), pp. 259–269.
[41] Alomayrah, N., Alnairi, M.M., Alrowaili, Z.A., Alshahrani, B., Kırkbınar, M., Olarinoye, I.O., Arslan, H. and Al-Buriahi, M.S., 2024. Gamma attenuation, dose rate and exposure/absorption buildup factors of apatite–wollastonite (AW) ceramic system. Radiation Physics and Chemistry, p.111658.
[42] Chinthakayala, S.K., Gadige, P., Kollipara, V.S. and Ramadurai, G., 2022. Gamma radiation shielding studies on highly dense barium bismuth borate glasses. International Journal of Applied Glass Science13(2), pp.211-222.