[1] Chen, Q., Naseer, K.A., Marimuthu, K., Kumar, P.S., Miao, B., Mahmoud, K.A. and Sayyed, M.I., 2021. Influence of modifier oxide on the structural and radiation shielding features of Sm 3+-doped calcium telluro-fluoroborate glass systems. Journal of the Australian Ceramic Society, 57, pp.275-286.
[2] Cao, D., Yang, G., Bourham, M. and Moneghan, D., 2020. Gamma radiation shielding properties of poly (methyl methacrylate)/Bi2O3 composites. Nuclear Engineering and Technology, 52(11), pp.2613-2619.
[3] AbuAlRoos, N.J., Azman, M.N., Amin, N.A.B. and Zainon, R., 2020. Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica, 78, pp.48-57.
[4] AbuAlRoos, N.J., Amin, N.A.B. and Zainon, R., 2019. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry, 165, p.108439.
[5] Soylu, H.M., Yurt Lambrecht, F. and Ersöz, O.A., 2015. Gamma radiation shielding efficiency of a new lead-free composite material. Journal of Radioanalytical and Nuclear Chemistry, 305, pp.529-534.
[6] Eshghi, M., 2020. Investigation of radiation protection features of the TeO2–B2O3–Bi2O3–Na2O–NdCl3 glass systems. Journal of Materials Science: Materials in Electronics, 31(19), pp.16479-16497.
[7] Li, J., Huang, M., Hou, R. and Ouyang, X., 2019. Photon attenuation coefficients of oxide dispersion strengthened steels by Geant4, XCOM and experimental data. Radiation Physics and Chemistry, 161, pp.23-28.
[8] Çağlar, M., Kayacık, H., Karabul, Y., Kılıç, M., Özdemir, Z.G. and İçelli, O., 2019. Na2Si3O7/BaO composites for the gamma-ray shielding in medical applications: Experimental, MCNP5, and WinXCom studies. Progress in Nuclear Energy, 117, p.103119.
[9] Ahmed, B., Shah, G.B., Malik, A.H. and Rizwan, M., 2020. Gamma-ray shielding characteristics of flexible silicone tungsten composites. Applied Radiation and Isotopes, 155, p.108901.
[10] Canel, A., Korkut, H. and Korkut, T., 2019. Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials. Radiation Physics and Chemistry, 158, pp.13-16.
[11] Mahmoud, K.M. and Rammah, Y.S., 2020. Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code, Physica B: Condensed Matter, 577, p. 411756.
[12] Nambiar, S. and Yeow, J.T.W., 2012. Polymer-Composite materials for radiation protection, ACS Applied Materials & Interfaces, 4(11), pp. 5717–5726.
[13] Singh, V.P. and Badiger, N.M., 2015. Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons, Glass Physics and Chemistry, 41(3), pp. 276–283.
[14] Poltabtim, W., Wimolmala, E. and Saenboonruang, K., 2018. Properties of lead-free gamma-ray shielding materials from metal oxide/EPDM rubber composites, Radiation Physics and Chemistry, 153, pp. 1–9.
[15] Sayyed, M.I., Al-Ghamdi, H., Almuqrin, A.H., Yasmin, S. and Elsafi, M., 2022. A study on the gamma radiation protection effectiveness of nano/micro-MgO-reinforced novel silicon rubber for medical applications. Polymers, 14(14), p.2867.
[16] Al‐Hadeethi, Y., Sayyed, M.I. and Rammah, Y.S., 2020. Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses, Ceramics International, 46(2), pp. 2055–2062.
[17] Singh, V.P., Badiger, N.M., Chanthima, N. and Kaewkhao, J., 2014. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiation Physics and Chemistry, 98, pp.14-21.
[18] Kumar, A., Jain, A., Sayyed, M.I., Laariedh, F., Mahmoud, K.A., Nebhen, J., Khandaker, M.U. and Faruque, M.R.I., 2021. Tailoring bismuth borate glasses by incorporating PbO/GeO2 for protection against nuclear radiation. Scientific reports, 11(1), p.7784.
[19] Aigueperse, J., Mollard, P., Devilliers, D., Chemla, M., Faron, R., Romano, R. and Cuer, J.P., 2000. Fluorine compounds, inorganic. Ullmann's encyclopedia of industrial chemistry.
[20] Greenwood, N.N. and Earnshaw, A., 2012. Chemistry of the elements. Elsevier.
[21] Dreveton, A., 2012. Manufacture of Aluminium Fluoride of High Density and Anhydrous Hydrofluoric Acid from Fluosilicic Acid, Procedia Engineering, 46, pp. 255–265.
[22] Hu, X.W., Lin, L.I., Gao, B.L., Shi, Z.N., Huan, L.I., Liu, J.J. and Wang, Z.W., 2011. Thermal decomposition of ammonium hexafluoroaluminate and preparation of aluminum fluoride. Transactions of Nonferrous Metals Society of China, 21(9), pp.2087-2092.
[23] AZoM, 2023. Alumina (Aluminium oxide) - the different types of commercially available grades. https://www.azom.com/article.aspx?ArticleID=1389.
[24] Nurdin, M., Maulidiyah, W.A., Abdillah, N. and Wibowo, D., 2016. Development of extraction method and characterization of TiO2 mineral from ilmenite. Int. J. ChemTech Res, 9(4), pp.483-491.
[25] Zahrani, M.M., 2012. Comments on “Microstructural and mechanical behavior of Mg/Mg2Si composite fabricated by a directional solidification system” by Mirshahi et al. [Mater. Sci. Eng. A 528 (2011) 8319–8323], Materials Science and Engineering: A, 544, pp. 80–82.
[26] Pešić, J., Popov, I., Šolajić, A., Damljanović, V., Hingerl, K., Belić, M. and Gajić, R., 2019. Ab initio study of the electronic, vibrational, and mechanical properties of the magnesium diboride monolayer. Condensed Matter, 4(2), p.37.
[27] Meng, X., Sasaki, K., Sano, K., Yuan, P. and Tatsuoka, H., 2017. Synthesis of crystalline Si-based nanosheets by extraction of Ca from CaSi2 in inositol hexakisphosphate solution. Japanese Journal of Applied Physics, 56(5S1), p.05DE02.
[28] Carroll, L. and Enger, S.A., 2023. M-TAG: A modular teaching-aid for Geant4, Heliyon (Londen), 9(10), p. e20229.
[29] Eshghi, M. and Alipoor, M.R., 2024. Nickel/multiwalled Carbon Nanotube Composites as Gamma-ray Shielding. NANO.
[30] Alipoor, M.R, Eshghi, M., 2023. Evaluation of carbon-platinum nanotubes in the performance of gamma ray shields. Nano World, 19(72), p. 1-9.
[31] Allison, J., Amako, K., Apostolakis, J.E.A., Araujo, H.A.A.H., Dubois, P.A., Asai, M.A.A.M., Barrand, G.A.B.G., Capra, R.A.C.R., Chauvie, S.A.C.S., Chytracek, R.A.C.R. and Cirrone, G.A.P., 2006. Geant4 developments and applications. IEEE Transactions on nuclear science, 53(1), pp.270-278.
[32] Pronyaev, V.G., 1998. XMuDat: Photon attenuation data on PC. Version 1.0.1 of August 1998. Summary documentation. https://inis.iaea.org/search/search.aspx?orig_q=RN:30022813.
[33] Albqoor, A., Ababneh, E., Okoor, S. and Zahran, I., 2023. Validation of electromagnetic physics models and electron range in Geant4 Brachytherapy application. Nuclear Engineering and Technology, 55(1), pp.229-237.
[34] Jackson, D.F. and Hawkes, D., 1981. X-ray attenuation coefficients of elements and mixtures, Physics Reports, 70(3), pp. 169–233.
[35] Abdikhoshimovich, K.J., Olimdjanovich, A.O., Pilania, H. and Kawale, K.V., 2024. Applications of Physics in Diagnostic Imaging. European Journal of Medical Genetics and Clinical Biology, 1(1), pp.98-107.
[36] Apte, K. and Bhide, S., 2024. Basics of radiation, in Elsevier eBooks, pp. 1–23.
[37] Cevik, U.Ğ.U.R., Bacaksiz, E.M.İ.N., Damla, N. and Çelik, A.K.I.N., 2008. Effective atomic numbers and electron densities for CdSe and CdTe semiconductors. Radiation measurements, 43(8), pp.1437-1442.
[38] Singh, V.P. and Badiger, N.M., 2014. Gamma ray and neutron shielding properties of some alloy materials, Annals of Nuclear Energy, 64, pp. 301–310.
[39] Kavaz, E., Tekin, H.O., Kilic, G.Ö.K.H.A.N. and Susoy, G., 2020. Newly developed Zinc-Tellurite glass system: an experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. Journal of Non-Crystalline Solids, 544, p.120169.
[40] Singh, V.P. and Badiger, N.M., 2015. Studies on photon buildup for some thermoluminescent dosimetric compounds, Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science, 90(3), pp. 259–269.
[41] Alomayrah, N., Alnairi, M.M., Alrowaili, Z.A., Alshahrani, B., Kırkbınar, M., Olarinoye, I.O., Arslan, H. and Al-Buriahi, M.S., 2024. Gamma attenuation, dose rate and exposure/absorption buildup factors of apatite–wollastonite (AW) ceramic system. Radiation Physics and Chemistry, p.111658.
[42] Chinthakayala, S.K., Gadige, P., Kollipara, V.S. and Ramadurai, G., 2022. Gamma radiation shielding studies on highly dense barium bismuth borate glasses. International Journal of Applied Glass Science, 13(2), pp.211-222.