Porosity and morphology control of mesoporous Cu-BTC Metal-Organic Framework microparticles

Document Type : Original Article

Authors

1 Faculty of Physics, Semnan University, PO Box: 35195-363, Semnan, Iran

2 Nanochemical Engineering Department, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran

Abstract

In this study, Cu-BTC structures, one of the most widely used metal-organic frameworks (MOF), were synthesized by solvothermal technique, and the effect of metal-to-ligand ratio and the solvent content on their crystalline structure, chemical bonding, morphology, and porosity properties was investigated systematically by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, and N2 adsorption-desorption measurements, respectively. The results demonstrate that the metal-to-ligand molar ratio although does not noticeably affect the crystalline nature of the product, but observably controls the morphology so that spherical to octahedral microparticles can be achieved. In addition, the specific surface area (SSA) and total pore volume of the mesoporous structures are significantly enhanced to 969.5 m2g-1 and 0.41 cm3g-1, respectively, for a 1:1 molar ratio of metal to ligand. On the other hand, changing the solvent content greatly increased the SSA (1364.8 m2g-1) and total pore volume (0.561 cm3g-1) by ~41% and ~37%, respectively. This would be promising finding for wide range of applications requiring high SSA materials.

Keywords

Main Subjects


© 2024 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Li, B., Wen, H.M., Cui, Y., Zhou, W., Qian, G. and Chen, B., 2016. Emerging multifunctional metal–organic framework materials. Advanced Materials28(40), pp.8819-8860.
[2] Allendorf, M.D. and Stavila, V., 2015. Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm17(2), pp.229-246.
[3] Salehi, S. and Karimzadeh, I., 2023. A Graphene and Nickel-Cobalt Metal Organic Framework Composite as a high-performance electrode material for supercapacitor application. Progress in Physics of Applied Materials3(2), pp.211-216.
[4] Zhang, C.Y., Wang, M.Y., Li, Q.T., Qian, B.H., Yang, X.J. and Xu, X.Y., 2013. Hydrothermal synthesis, crystal structure, and luminescent properties of two zinc (II) and cadmium (II) 3D metal‐organic frameworks. Zeitschrift für anorganische und allgemeine Chemie639(5), pp.826-831.
[6] Yuan, F., Xie, J., Hu, H.M., Yuan, C.M., Xu, B., Yang, M.L., Dong, F.X. and Xue, G.L., 2013. Effect of pH/metal ion on the structure of metal–organic frameworks based on novel bifunctionalized ligand 4′-carboxy-4, 2′: 6′, 4′′-terpyridine. CrystEngComm15(7), pp.1460-1467.
[7] Akhbari, K. and Morsali, A., 2011. Effect of the guest solvent molecules on preparation of different morphologies of ZnO nanomaterials from the [Zn2 (1, 4-bdc) 2 (dabco)] metal-organic framework. Journal of Coordination Chemistry64(20), pp.3521-3530.
[8] He, Y.C., Guo, J., Zhang, H.M., Ma, J.F. and Liu, Y.Y., 2014. Tuning the void volume in a series of isomorphic porous metal–organic frameworks by varying the solvent size and length of organic ligands. CrystEngComm16(24), pp.5450-5457.
[9] Mazaj, M., Birsa Čelič, T., Mali, G., Rangus, M., Kaucic, V. and Zabukovec Logar, N., 2013. Control of the crystallization process and structure dimensionality of Mg–Benzene–1, 3, 5-tricarboxylates by tuning solvent composition. Crystal growth & design13(8), pp.3825-3834.
[10] Xia, Z.X., Huang, K.L., Rong, X., Chen, S.C., He, M.Y. and Chen, Q., 2022. Metal-to-ligand ratio-controlled assembly of two Ca (II) complexes: Synthesis, structures, reactant-induced reversible transformation, and catalytic properties. Inorganic Chemistry Communications145, p.109906.
[11] Liu, Y., Qi, Y., Su, Y.H., Zhao, F.H., Che, Y.X. and Zheng, J.M., 2010. Five novel cobalt coordination polymers: effect of metal–ligand ratio and structure characteristics of flexible bis (imidazole) ligands. CrystEngComm12(10), pp.3283-3290.
[12] McKellar, S.C., Graham, A.J., Allan, D.R., Mohideen, M.I.H., Morris, R.E. and Moggach, S.A., 2014. The effect of pressure on the post-synthetic modification of a nanoporous metal–organic framework. Nanoscale6(8), pp.4163-4173.
[13] Cao, Y., Ma, Y., Wang, T., Wang, X., Huo, Q. and Liu, Y., 2016. Facile fabricating hierarchically porous metal–organic frameworks via a template-free strategy. Crystal Growth & Design16(1), pp.504-510.
[14] Soni, S., Bajpai, P.K. and Arora, C., 2020. A review on metal-organic framework: Synthesis, properties and ap-plication. Characterization and Application of Nanomaterials3(2), pp.87-106.
[15] Stock, N. and Biswas, S., 2012. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews112(2), pp.933-969.
[16] Hwang, J., Yan, R., Oschatz, M. and Schmidt, B.V., 2018. Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. Journal of materials chemistry A6(46), pp.23521-23530.
[17] Troyano, J., Carné-Sánchez, A., Avci, C., Imaz, I. and Maspoch, D., 2019. Colloidal metal–organic framework particles: the pioneering case of ZIF-8. Chemical Society Reviews48(23), pp.5534-5546.
[18] Liu, P.P., Cheng, A.L., Yue, Q., Liu, N., Sun, W.W. and Gao, E.Q., 2008. Cobalt (II) coordination networks dependent upon the spacer length of flexible bis (tetrazole) ligands. Crystal Growth and Design8(5), pp.1668-1674.
[19] Chui, S.S.Y., Lo, S.M.F., Charmant, J.P., Orpen, A.G. and Williams, I.D., 1999. A chemically functionalizable nanoporous material [Cu3 (TMA) 2 (H2O) 3] n. Science283(5405), pp.1148-1150.
[20] Prestipino, C., Regli, L., Vitillo, J.G., Bonino, F., Damin, A., Lamberti, C., Zecchina, A., Solari, P.L., Kongshaug, K.O. and Bordiga, S., 2006. Local structure of framework Cu (II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chemistry of materials18(5), pp.1337-1346.
[21] Oar-Arteta, L., Wezendonk, T., Sun, X., Kapteijn, F. and Gascon, J., 2017. Metal organic frameworks as precursors for the manufacture of advanced catalytic materials. Materials Chemistry Frontiers1(9), pp.1709-1745.
[22] Bacsik, Z., Atluri, R., Garcia-Bennett, A.E. and Hedin, N., 2010. Temperature-induced uptake of CO2 and formation of carbamates in mesocaged silica modified with n-propylamines. Langmuir26(12), pp.10013-10024.
[23] Davydovskaya, P., Pohle, R., Tawil, A. and Fleischer, M., 2013. Work function based gas sensing with Cu-BTC metal-organic framework for selective aldehyde detection. Sensors and Actuators B: Chemical187, pp.142-146.
[24] Davydovskaya, P., Tawil, A. and Pohle, R., 2014. Ethanol sensing with Cu-BTC Metal Organic Framework: mass sensitive, work function based and IR investigations. Key Engineering Materials605, pp.87-90.
[25] Singh, N., Dalakoti, S., Wamba, H.N., Chauhan, R., Divekar, S. and Dasgupta, S., 2023. Preparation of Cu-BTC MOF extrudates for CH4 separation from CH4/N2 gas mixture. Microporous and Mesoporous Materials360, p.112723.
[26] Kim, J., Cho, H.Y. and Ahn, W.S., 2012. Synthesis and adsorption/catalytic properties of the metal organic framework CuBTC. Catalysis Surveys from Asia16, pp.106-119.
[27] Isaeva, V.I., Saifutdinov, B.R., Chernyshev, V.V., Vergun, V.V., Kapustin, G.I., Kurnysheva, Y.P., Ilyin, M.M. and Kustov, L.M., 2020. Impact of the preparation procedure on the performance of the microporous HKUST-1 metal-organic framework in the liquid-phase separation of aromatic compounds. Molecules25(11), p.2648.
[28] He, Y., Zhou, W., Qian, G. and Chen, B., 2014. Methane storage in metal–organic frameworks. Chemical Society Reviews43(16), pp.5657-5678.
[29] Isaeva, V.I., Chernyshev, V.V., Sokolova, N.A. and Kapustin, G.I., 2018. Modifying the hydrophobic properties of metal–organic framework HKUST-1. Russian Journal of Physical Chemistry A92, pp.2391-2395.
[30] Klimakow, M., Klobes, P., Thunemann, A.F., Rademann, K. and Emmerling, F., 2010. Mechanochemical synthesis of metal− organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chemistry of Materials22(18), pp.5216-5221.
[31] Głowniak, S., Szczęśniak, B., Choma, J. and Jaroniec, M., 2021. Mechanochemistry: Toward green synthesis of metal–organic frameworks. Materials Today46, pp.109-124.
[32] Khan, N.A., Haque, E. and Jhung, S.H., 2010. Rapid syntheses of a metal–organic framework material Cu 3 (BTC) 2 (H 2 O) 3 under microwave: a quantitative analysis of accelerated syntheses. Physical Chemistry Chemical Physics12(11), pp.2625-2631.
[33] Schlesinger, M., Schulze, S., Hietschold, M. and Mehring, M., 2010. Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2 (btc) 3 (H2O) 3] and [Cu2 (btc)(OH)(H2O)]. Microporous and Mesoporous Materials132(1-2), pp.121-127.
[34] Chen, Y., Mu, X., Lester, E. and Wu, T., 2018. High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity. Progress in Natural Science: Materials International28(5), pp.584-589.
[35] Deyko, G.S., Glukhov, L.M., Isaeva, V.I., Chernyshev, V.V., Vergun, V.V., Archipov, D.A., Kapustin, G.I., Tkachenko, O.P., Nissenbaum, V.D. and Kustov, L.M., 2022. Modifying HKUST-1 crystals for selective ethane adsorption using ionic liquids as synthesis media. Crystals12(2), p.279.
[36] Campagnol, N., Van Assche, T.R., Li, M., Stappers, L., Dincă, M., Denayer, J.F., Binnemans, K., De Vos, D.E. and Fransaer, J., 2016. On the electrochemical deposition of metal–organic frameworks. Journal of Materials Chemistry A4(10), pp.3914-3925.
[37] Varsha, M.V. and Nageswaran, G., 2020. Direct electrochemical synthesis of metal organic frameworks. Journal of The Electrochemical Society167(15), p.155527.
[38] Kaur, R., Kaur, A., Umar, A., Anderson, W.A. and Kansal, S.K., 2019. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties. Materials Research Bulletin109, pp.124-133.
[39] Biemmi, E., Christian, S., Stock, N. and Bein, T., 2009. High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous and Mesoporous Materials117(1-2), pp.111-117.
[40] Mote, V.D., Purushotham, Y. and Dole, B.N., 2012. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of theoretical and applied physics6, pp.1-8.
[41] Suryanarayana, C., Norton, M.G., Suryanarayana, C. and Norton, M.G., 1998. X-rays and Diffraction (pp. 3-19). Springer US.
[42] Salehi, S., Aghazadeh, M. and Karimzadeh, I., 2022. Zn-MOF electrode material for supercapacitor applications. Progress in Physics of Applied Materials2(1), pp.77-82.
[43] Yang, F., Hu, W., Yang, C., Patrick, M., Cooksy, A.L., Zhang, J., Aguiar, J.A., Fang, C., Zhou, Y., Meng, Y.S. and Huang, J., 2020. Tuning internal strain in metal–organic frameworks via vapor phase infiltration for CO2 reduction. Angewandte Chemie132(11), pp.4602-4610.
[44] Lopez‐Rubio, A., Flanagan, B.M., Gilbert, E.P. and Gidley, M.J., 2008. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers: Original Research on Biomolecules89(9), pp.761-768.
[45] Liu, S., Fu, L.H., Liu, Y.J., Meng, L.Y., Dong, Y.Y., Li, Y.Y. and Ma, M.G., 2016. Cu/C or Cu2O/C composites: selective synthesis, characterization, and applications in water treatment. Science of Advanced Materials8(11), pp.2045-2053.
[46] Samuel, M.S., Suman, S., Selvarajan, E., Mathimani, T. and Pugazhendhi, A., 2020. Immobilization of Cu3 (btc) 2 on graphene oxide-chitosan hybrid composite for the adsorption and photocatalytic degradation of methylene blue. Journal of Photochemistry and Photobiology B: Biology204, p.111809.
[47] Azad, F.N., Ghaedi, M., Dashtian, K., Hajati, S. and Pezeshkpour, V., 2016. Ultrasonically assisted hydrothermal synthesis of activated carbon–HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization. Ultrasonics sonochemistry31, pp.383-393.
[48] Nehra, M., Kumar, R., Dilbaghi, N. and Kumar, S., 2023. Controlled synthesis of Cu-MOF possessing peroxidase-mimetic activity for the colorimetric detection of tetracycline in aqueous solution. New Journal of Chemistry47(16), pp.7595-7603.
[49] Shen, T., Liu, T., Mo, H., Yuan, Z., Cui, F., Jin, Y. and Chen, X., 2020. Cu-based metal–organic framework HKUST-1 as effective catalyst for highly sensitive determination of ascorbic acid. Rsc Advances10(39), pp.22881-22890.
[50] Ghafuri, H., Ganjali, F. and Hanifehnejad, P., 2020. Cu. BTC MOF as a novel and efficient catalyst for the synthesis of 1, 8-dioxo-octa-hydro xanthene. Chemistry Proceedings3(1).
[51] Lin, S., Song, Z., Che, G., Ren, A., Li, P., Liu, C. and Zhang, J., 2014. Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution. Microporous and mesoporous materials193, pp.27-34.
[52] Kim, K., Kim, S., Lee, H.N., Park, Y.M., Bae, Y.S. and Kim, H.J., 2019. Electrochemically derived CuO nanorod from copper-based metal-organic framework for non-enzymatic detection of glucose. Applied Surface Science479, pp.720-726.
[53] Liu, Y., Ghimire, P. and Jaroniec, M., 2019. Copper benzene-1, 3, 5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. Journal of colloid and interface science535, pp.122-132.
[54] Luo, Y., Chen, D., Wei, F. and Liang, Z., 2018. Synthesis of Cu‐BTC metal‐organic framework by ultrasonic wave‐assisted ball milling with enhanced congo red removal property. ChemistrySelect3(41), pp.11435-11440.
[55] Zhang, J., Zhang, T., Yu, D., Xiao, K. and Hong, Y., 2015. Transition from ZIF-L-Co to ZIF-67: a new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems. CrystEngComm17(43), pp.8212-8215.
[56] Sanil, E.S., Cho, K.H., Lee, S.K., Lee, U.H., Ryu, S.G., Lee, H.W., Chang, J.S. and Hwang, Y.K., 2015. Size and morphological control of a metal–organic framework Cu-BTC by variation of solvent and modulator. Journal of porous materials22, pp.171-178.
[57] Jang, J.S., Koo, W.T., Kim, D.H. and Kim, I.D., 2018. In situ coupling of multidimensional MOFs for heterogeneous metal-oxide architectures: toward sensitive chemiresistors. ACS central science4(7), pp.929-937.
[58] Hao, S. and Liu, Y., 2022. Constructing and synthesizing optimal Cu-BTC and its application in low-temperature denitration. Journal of Materials Science57(3), pp.1689-1702.