Structural and antibacterial properties of AgFe2O4 and Fe3O4 nanoparticles, and their nanocomposites

Document Type : Original Article

Authors

1 Department of Physics, Faculty of Science, Malayer University, Malayer, Iran

2 Department of Biology, Faculty of Science, Malayer University, Malayer, Iran

3 Department of Chemistry, Faculty of Science, Kashan University, Kashan, Iran

4 Department of Chemistry, Islamic Azad University Central Tehran Branch, Iran

5 Department of Biology, Faculty of science, Razi University, Kermanshah, Iran

Abstract

This research investigated the antibacterial activities of AgFe2O4 and Fe3O4 ferrite nanoparticles compared to AgFe2O4/SiO2/Passiflora Caerulea and Fe3O4/SiO2/Passiflora Caerulea nanocomposites. To synthesize ferrite nanocomposites, Passiflora Caerulea plant extract was doped onto ferrite nanoparticles with the assistance of silica (SiO2). The degree of crystallinity, phase composition, microstructure, and the compositions of the samples were determined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), and energy dispersive X-ray analysis (EDXA), respectively. Furthermore, the broth microdilution method was employed against Gram-positive and Gram-negative bacteria to assess the antimicrobial activity. The method was also applied to Gram-positive and Gram-negative bacteria to examine the antimicrobial activity. The results of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of silver and iron nanocomposites indicated that these nanocomposites exhibited superior antibacterial activity compared to silver and iron ferrite nanoparticles. Thus, silver and iron ferrite nanocomposites could serve as a novel antibacterial agent against infectious bacteria.

Keywords

Main Subjects


© 2024 The Author(s). Journal of Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

[1] Santhoshkumar, J., Sowmya, B., Kumar, S. V., and Rajeshkumar, S., 2019. Toxicology evaluation and antidermatophytic activity of silver nanoparticles synthesized using leaf extract of Passiflora caerulea. South African Journal of Chemical Engineering29, 17-23.
 
[2]  Alshameri, A. W., & Owais, M., 2022. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OpenNano8, 100077.
[3]    Montiel Schneider, M. G., Martín, M. J., Otarola, J., Vakarelska, E., Simeonov, V., Lassalle, V., and Nedyalkova, M., 2022. Biomedical applications of iron oxide nanoparticles: current insights progress and perspectives. Pharmaceutics14(1), 204.
[4]     Li, W. R., Xie, X. B., Shi, Q. S., Zeng, H. Y., Ou-Yang, Y. S., and Chen, Y. B., 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied microbiology and biotechnology85, 1115-1122.
[5]    Pakravan, N., Shayani-Jam, H., Beiginejad, H., anf Tavafi, H., 2021. A green and efficient synthesis of novel caffeic acid derivatives with Meldrum’s acid moieties as potential antibacterial agents. Journal of the Iranian Chemical Society18, 2679-2688.
[6]   Aritonang, H. F., Koleangan, H., and Wuntu, A. D., 2019. Synthesis of silver nanoparticles using aqueous extract of medicinal plants’(Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. International journal of microbiology2019.
[7]    Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., ... and Yang, X., 2007. Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology18(28), 285604.
[8]      Lagashetty, A., Pattar, A., and Ganiger, S. K., 2019. Synthesis, characterization and antibacterial study of Ag doped magnesium ferrite nanocomposite. Heliyon5(5).
[9]    Muthukumar, H., Palanirajan, S. K., Shanmugam, M. K., and Gummadi, S. N., 2020. Plant extract mediated synthesis enhanced the functional properties of silver ferrite nanoparticles over chemical mediated synthesis. Biotechnology Reports26, e00469.
[10] Sivakumar, S. R., Manimaran, K., Govindasamy, M., Alzahrani, F. M., and Alsaiari, N. S., 2023. Green synthesis and characterization of CuO nanoparticles using Halymenia dilatata extract and its evaluation of antimicrobial, anticancer activity. Biomass Conversion and Biorefinery, 1-10.‏
[11] Jamzad, M., and Kamari Bidkorpeh, M.,(2020. Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. Journal of nanostructure in Chemistry10(3), 193-201.
[12] Khezripour, A. R., Souri, D., Tavafi, H., and Ghabooli, M. 2019. Serial dilution bioassay for the detection of antibacterial potential of ZnSe quantum dots and their Fourier transform infra-red spectroscopy. Measurement148, 106939.
[13] Kamalianfar, A., Naseri, M., Abdala, A. A., and Jahromi, S. P., 2021. Hierarchical sphere-like ZnO–CuO grown in a controlled boundary layer for high-performance H2S sensing. Journal of Electronic Materials50(9), 5168-5176.
[14] Naseri, M. G., Sadrolhosseini, A. R., Dehzangi, A., Kamalianfar, A., Saion, E. B., Zamiri, R., ... and Majlis, B. Y., 2014. Silver nanoparticle fabrication by laser ablation in polyvinyl alcohol solutions. Chinese Physics Letters31(7), 077803.
[15] Anajafi, Z., Naseri, M., and Neri, G., 2019. Optical, magnetic and gas sensing properties of LaFeO 3 nanoparticles synthesized by different chemical methods. Journal of Electronic Materials48, 6503-6511.
[16] Hedayati, K., Azarakhsh, S., Saffari, J., and Ghanbari, D., 2017. Magnetic and Photo-catalyst CoFe 2 O 4-CdS Nanocomposites: Simple Preparation of Ni, Co, Zn or Ag-Doped CdS Nanoparticles. Journal of Materials Science: Materials in Electronics28, 5472-5484.
[17] Hedayati, K., and Nabiyouni, G., 2014. Surface roughness analysis and magnetic property studies of nickel thin films electrodeposited onto rotating disc electrodes. Applied Physics A116, 1605-1612.
[18] Dehzangi, A., Larki, F., Naseri, M. G., Navasery, M., Majlis, B. Y., Wee, M. F. R., ... and Saion, E., 2015. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology. Applied Surface Science334, 87-93.
[19] Kamalianfar, A., and Naseri, M. G., 2019. Effect of boundary layer thickness on ammonia gas sensing of Cr2O3-decorated ZnO multipods. Applied Physics A125(5), 370.
[20] Laouini, S. E., Bouafia, A., Soldatov, A. V., Algarni, H., Tedjani, M. L., Ali, G. A., and Barhoum, A., 2021. Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation. Membranes11(7), 468.
[21] Ghasemi, R., Naseri, M., Souri, D., and Kamalianfar, A., 2022. Structural and physical properties of Co1-xCdxFe2O4/SiO2 nanocomposites. Progress in Physics of Applied Materials2(2), 147-156.
[22] Zhang, X. F., Liu, Z. G., Shen, W., and Gurunathan, S., 2016. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International journal of molecular sciences17(9), 1534.
[23] Sadighian, S., Sharifan, K., Khanmohammadi, A., and Rohani, M. K., 2021. A facile synthesis of Fe3O4@ SiO2@ zno for curcumin delivery. Biointerface Res. Appl. Chem12, 7994-8002.‏
[24] Cheraghi, M., Lorestani, B., Zandipak, R., and Sobhanardakani, S., 2022. GO@ Fe3O4@ ZnO@ CS nanocomposite as a novel adsorbent for removal of doxorubicin hydrochloride from aqueous solutions. Toxin Reviews41(1), 82-91.‏
[25] Chen, L., and Liang, J., 2020. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Materials Science and Engineering: C112, 110924.
[26] Avila, J. E. N. N. Y., Jiménez, A. N. G. E. L., Méndez, J. O. N. H., and Murillo, E. L. I. Z. A. B. E. T. H., 2021. Chemical and biological potential of passiflora vitifolia fruit byproducts collected in the Colombian central Andes. Asian Journal of Pharmaceutical and Clinical Research, 182-189.
[27] Naseri, M. G., Halimah, M. K., Dehzangi, A., Kamalianfar, A., Saion, E. B., and Majlis, B. Y., 2014. A comprehensive overview on the structure and comparison of magnetic properties of nanocrystalline synthesized by a thermal treatment method. Journal of Physics and chemistry of solids75(3), 315-327.
[28] Salimi, N., Mohammadi-Manesh, E., Ahmadvand, N., Danafar, H., and Ghiasvand, S., 2023. Curcumin-Loaded by Fe3O4/GO and Fe3O4/ZnO/GO Nanocomposites for Drug Delivery Applications: Synthesis, Characterization and Anticancer Assessment. Journal of Inorganic and Organometallic Polymers and Materials, 1-16.
[29] James, S., Lewis, I., 2022. Performance standards for antimicrobial susceptibility testing (33 Eds), CLSI M100-S22-U, 2023.
[30] Singh, H., Rajput, J. K., Dogra, N., Jain, G., Gupta, A., and Garg, S., 2021. A novel sucrose chelated visible-light sensitive AFO NPs: preparation, characterization, photocatalytic activity, and reaction mechanism. Journal of the Australian Ceramic Society57, 835-848.
[31] Naderi, E., Aghajanzadeh, M., Zamani, M., Hashiri, A., Sharafi, A., Kamalianfar, A., ... and Danafar, H., 2020. Improving the anti-cancer activity of quercetin-loaded AgFeO2 through UV irradiation: Synthesis, characterization, and in vivo and in vitro biocompatibility study. Journal of Drug Delivery Science and Technology57, 101645.
[32] Esmaeilpour, M., Sardarian, A. R., and Firouzabadi, H., 2018. Theophylline supported on modified silica‐coated magnetite nanoparticles as a novel, efficient, reusable catalyst in green one‐Pot synthesis of spirooxindoles and phenazines. ChemistrySelect3(32), 9236-9248.
[33] Fayyadh, A. A., and Jaduaa Alzubaidy, M. H., 2021. Green-synthesis of Ag2O nanoparticles for antimicrobial assays. Journal of the Mechanical Behavior of Materials30(1), 228-236.
[34] Mazhari, M. P., and Hamadanian, M., 2018. Preparation and characterization of Fe3O4@ SiO2@ TiO2 and Ag/Fe3O4@ SiO2@ TiO2 nanocomposites for water treatment: process optimization by response surface methodology. Journal of Electronic Materials47(12), 7484-7496.
[35] Wang, L., Sun, Y., Wang, J., Wang, J., Yu, A., Zhang, H., and Song, D., 2011. Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloids and Surfaces B: Biointerfaces84(2), 484-490.
[36] Babu, C. M., Palanisamy, B., Sundaravel, B., Palanichamy, M., and Murugesan, V., 2013. A novel magnetic Fe3O4/SiO2 core–shell nanorods for the removal of arsenic. Journal of Nanoscience and Nanotechnology13(4), 2517-2527.
[37] Laouini, S. E., Bouafia, A., Soldatov, A. V., Algarni, H., Tedjani, M. L., Ali, G. A., and Barhoum, A., 2021. Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation. Membranes11(7), 468.
[38] Madhavi, Kumar, M., Ansari, J. R., Kumar, V., Nagar, S., and Sharma, A., 2022. Fe3O4 coated SiO2 magnetic nanoparticles for enhanced antibacterial activity and electrochemical sensing. Metals12(12), 2145.
[39] Chi, Y., Yuan, Q., Li, Y., Tu, J., Zhao, L., Li, N., and Li, X., 2012. Synthesis of Fe₃O₄@ SiO₂–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. Journal of colloid and interface science383(1).
[40] Chireh, M., Karam, Z. M., Naseri, M., Jafarinejad-Farsangi, S., and Ghaedamini, H., 2022. Synthesis, characterization and cytotoxicity study of graphene/doped ZnO/SiO2 nanocomposites. Applied Physics A128(4), 307.
[41] Du, Q., Zhang, W., Ma, H., Zheng, J., Zhou, B., and Li, Y., 2012. Immobilized palladium on surface-modified Fe3O4/SiO2 nanoparticles: as a magnetically separable and stable recyclable high-performance catalyst for Suzuki and Heck cross-coupling reactions. Tetrahedron68(18), 3577-3584.
[42] Hashemi, A., Naseri, M., and Chireh, M., 2021. Evaluation of physical properties, mechanism and photocatalytic activities of potassium ferrate nanostructures as an adsorbent for MB dye under UV light. Applied Physics A127(10), 743.
[43] Anajafi, Z., Naseri, M., Hashemi, A., and Neri, G., 2023. Structural and photocatalytic properties of CeFeO3 and CeFeO3/GO nanostructures. Journal of Sol-Gel Science and Technology105(1), 116-126.
[44] Ahmed, S., and Ikram, S., 2016. Chitosan based scaffolds and their applications in wound healing. Achievements in the life sciences10(1), 27-37.
[45] Hashemi, A., Naseri, M., Ghiyasvand, S., Naderi, E., and Vafai, S., 2022. Evaluation of physical properties, cytotoxicity, and antibacterial activities of calcium–cadmium ferrite nanoparticles. Applied Physics A128(3), 236.
[46] Santhoshkumar, J., Sowmya, B., Kumar, S. V., and Rajeshkumar, S., 2019. Toxicology evaluation and antidermatophytic activity of silver nanoparticles synthesized using leaf extract of Passiflora caerulea. South African Journal of Chemical Engineering29, 17-23.
[47] Lee, N. Y., Ko, W. C., and Hsueh, P. R., 2019. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in pharmacology10, 452171.