[1] Shokri, A. J. Tavakoli, M. H., Sabouri, A. A., Akhoundikherabad,M. S. 2017. Numerical study of influence of coil step on the induction heating process in three-dimensional, Journal Of Applied Electromagnetic, 27(3), pp 37-44.
[2] Tavakoli, M.H., Karbaschi, H. and Samavat, F., 2011. Influence of workpiece height on the induction heating process. Mathematical and Computer Modelling, 54(1-2), pp.50-58.
[3] Shokri, A.J., Tavakoli, M.H., Sabouri Dodaran, A. and Khezrabad, A., 2019. A numerical study of the effect of the number of turns of coil on the heat produced in the induction heating process in the 3d model. Iranian Journal of Physics Research, 18(3), pp.408-419.
[4] Rudnev, V., Loveless, D. and Cook, R.L., 2017. Handbook of induction heating. CRC press.
[5] Lupi, S., Forzan, M. and Aliferov, A., 2015. Induction and direct resistance heating. Switzerland: Springer.
[6] Lucía, O., Maussion, P., Dede, E.J. and Burdío, J.M., 2013. Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Transactions on industrial electronics, 61(5), pp.2509-2520.
[7] Bordelon, D.E., Goldstein, R.C., Nemkov, V.S., Kumar, A., Jackowski, J.K., DeWeese, T.L. and Ivkov, R., 2011. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE transactions on magnetics, 48(1), pp.47-52.
[8] Heidari, H., Tavakoli, M.H., Sobhani, S.O. and Honarmandnia, M., 2018. Influence of magnetic flux concentrator on the induction heating process in crystal growth systems-geometry investigation. CrystEngComm, 20(48), pp.7857-7865.
[9] Khodamoradi, H., Tavakoli, M.H. and Mohammadi, K., 2015. Influence of crucible and coil geometry on the induction heating process in Czochralski crystal growth system. Journal of Crystal Growth, 421, pp.66-74.
[10] Tavakoli, M.H., Mohammadi-Manesh, E. and Ojaghi, A., 2009. Influence of crucible geometry and position on the induction heating process in crystal growth systems. Journal of crystal growth, 311(17), pp.4281-4288.
[11] Tavakoli, M.H. and Mostagir, T.N., 2012. Computational Study of Induction Heating Process in Crystal Growth Systems—The Role of Input Current Shape. crucible, 1, p.0.
[12] Tavakoli, M.H., Karbaschi, H., Samavat, F. and Mohammadi-Manesh, E., 2010. Numerical study of induction heating in melt growth systems—Frequency selection. Journal of crystal growth, 312(21), pp.3198-3203.
[13] Zhou, X. and Thomas, B.G., 2013. Measuring heat transfer during spray cooling using controlled induction-heating experiments and computational models. Applied Mathematical Modelling, 37(5), pp.3181-3192.
[14] Heidari, H., Tavakoli, M.H., Shokri, A., Mohamad Moradi, B., Mohammad Sharifi, O. and Asaad, M.J.M., 2020. 3D simulation of the coil geometry effect on the induction heating process in Czochralski crystal growth system. Crystal Research and Technology, 55(3), p.1900147.